Project Icon

simpletransformers

快速构建和优化Transformer模型的开源工具

simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。

License Downloads

All Contributors

Simple Transformers

This library is based on the Transformers library by HuggingFace. Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model.

Supported Tasks:

  • Information Retrieval (Dense Retrieval)
  • (Large) Language Models (Training, Fine-tuning, and Generation)
  • Encoder Model Training and Fine-tuning
  • Sequence Classification
  • Token Classification (NER)
  • Question Answering
  • Language Generation
  • T5 Model
  • Seq2Seq Tasks
  • Multi-Modal Classification
  • Conversational AI.

Table of contents

Setup

With Conda

  1. Install Anaconda or Miniconda Package Manager from here
  2. Create a new virtual environment and install packages.
$ conda create -n st python pandas tqdm
$ conda activate st

Using Cuda:

$ conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch

Without using Cuda

$ conda install pytorch cpuonly -c pytorch
  1. Install simpletransformers.
$ pip install simpletransformers

Optional

  1. Install Weights and Biases (wandb) for tracking and visualizing training in a web browser.
$ pip install wandb

Usage

All documentation is now live at simpletransformers.ai

Simple Transformer models are built with a particular Natural Language Processing (NLP) task in mind. Each such model comes equipped with features and functionality designed to best fit the task that they are intended to perform. The high-level process of using Simple Transformers models follows the same pattern.

  1. Initialize a task-specific model
  2. Train the model with train_model()
  3. Evaluate the model with eval_model()
  4. Make predictions on (unlabelled) data with predict()

However, there are necessary differences between the different models to ensure that they are well suited for their intended task. The key differences will typically be the differences in input/output data formats and any task specific features/configuration options. These can all be found in the documentation section for each task.

The currently implemented task-specific Simple Transformer models, along with their task, are given below.

TaskModel
Binary and multi-class text classificationClassificationModel
Conversational AI (chatbot training)ConvAIModel
Language generationLanguageGenerationModel
Language model training/fine-tuningLanguageModelingModel
Multi-label text classificationMultiLabelClassificationModel
Multi-modal classification (text and image data combined)MultiModalClassificationModel
Named entity recognitionNERModel
Question answeringQuestionAnsweringModel
RegressionClassificationModel
Sentence-pair classificationClassificationModel
Text Representation GenerationRepresentationModel
Document RetrievalRetrievalModel
  • Please refer to the relevant section in the docs for more information on how to use these models.
  • Example scripts can be found in the examples directory.
  • See the Changelog for up-to-date changes to the project.

A quick example

from simpletransformers.classification import ClassificationModel, ClassificationArgs
import pandas as pd
import logging


logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)

# Preparing train data
train_data = [
    ["Aragorn was the heir of Isildur", 1],
    ["Frodo was the heir of Isildur", 0],
]
train_df = pd.DataFrame(train_data)
train_df.columns = ["text", "labels"]

# Preparing eval data
eval_data = [
    ["Theoden was the king of Rohan", 1],
    ["Merry was the king of Rohan", 0],
]
eval_df = pd.DataFrame(eval_data)
eval_df.columns = ["text", "labels"]

# Optional model configuration
model_args = ClassificationArgs(num_train_epochs=1)

# Create a ClassificationModel
model = ClassificationModel(
    "roberta", "roberta-base", args=model_args
)

# Train the model
model.train_model(train_df)

# Evaluate the model
result, model_outputs, wrong_predictions = model.eval_model(eval_df)

# Make predictions with the model
predictions, raw_outputs = model.predict(["Sam was a Wizard"])

Experiment Tracking with Weights and Biases

  • Weights and Biases makes it incredibly easy to keep track of all your experiments. Check it out on Colab here: Open In Colab

Current Pretrained Models

For a list of pretrained models, see Hugging Face docs.

The model_types available for each task can be found under their respective section. Any pretrained model of that type found in the Hugging Face docs should work. To use any of them set the correct model_type and model_name in the args dictionary.


Contributors ✨

Thanks goes to these wonderful people (emoji key):

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号