Project Icon

TinyLlama-1.1B-step-50K-105b

紧凑型1.1B参数模型的高效预训练项目

TinyLlama是一个旨在高效预训练1.1B参数模型的项目,使用3万亿个token,计划在90天内完成。其架构和tokenizer与Llama 2相同,适用于多种需要低计算和内存需求的应用。该项目的中期里程碑在50K步和105B tokens,成果显著。利用16块A100-40G GPU进行优化训练,提升效率并节省资源。TinyLlama与多个开源项目兼容,便于通过transformers库进行集成。更多详情可查阅TinyLlama的GitHub页面。

Meta-Llama-3-70B - Meta发布Llama 3开源大语言模型系列
GithubHuggingfaceLlama 3Meta人工智能大型语言模型开源项目模型自然语言处理
Meta推出Llama 3大语言模型系列,包含8B和70B参数规模的预训练和指令微调版本。模型在对话任务中表现出色,性能超越多个现有开源聊天模型。Llama 3采用优化的Transformer架构,使用公开在线数据训练,注重提升模型的实用性和安全性。该模型适用于英语商业和研究用途,Meta提供了使用说明、评估结果及负责任的AI开发实践指南。
Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
Meta-Llama-3-8B - Meta发布的新一代大规模语言模型Llama 3
GithubHuggingfaceLlama 3Meta人工智能大型语言模型开源项目模型自然语言处理
Meta-Llama-3-8B是Meta发布的新一代大语言模型,拥有80亿参数规模。该模型在超过15万亿token的公开数据上预训练,经过指令微调后在对话任务中表现出色。模型采用优化的Transformer架构,支持8K上下文长度,在安全性和实用性方面进行了优化。适用于商业和研究用途,可用于开发聊天助手等多种自然语言生成应用。
llama-3 - 提升对话生成效果的指令调优语言模型
GithubHuggingfaceLlama 3Meta开源项目指导调整模型语言模型责任与安全
Llama 3是由Meta开发的大型语言模型家族,提供8B和70B参数选项,经过预训练和指令调优,专为对话生成优化。模型采用Transformer架构,并通过监督微调和人类反馈强化学习,实现与人类偏好的对齐。Llama 3于2024年4月18日发布,提供商用许可证,用于商业与研究,需遵循相关使用政策。
llama-3.1 - Meta推出新一代多语言大规模语言模型 Llama 3.1
GithubHuggingfaceLlama 3.1Meta人工智能大语言模型开源项目模型自然语言处理
Llama 3.1是Meta开发的新一代多语言大规模语言模型,提供8B、70B和405B三种规模。支持128k上下文长度,在多语言对话和通用任务上表现优异。相比前代模型,Llama 3.1在MMLU等基准测试上有显著提升,特别是指令微调版本。该模型可用于商业和研究领域。
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 - 经INT8量化优化的Llama-3指令模型实现内存节省和性能提升
AI助手GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型模型量化语言模型评估
Meta-Llama-3.1-70B-Instruct模型通过INT8量化优化后,GPU内存占用减少50%,计算性能提升两倍。模型保持多语言处理能力,在Arena-Hard、OpenLLM、HumanEval等基准测试中性能恢复率达98%以上。支持vLLM后端部署及OpenAI兼容API。
Meta-Llama-3-8B-Instruct-quantized.w8a16 - 智能LLM量化技术实现50%体积压缩并完整保留性能
GithubHuggingfaceMeta-Llama-3OpenLLM人工智能开源项目权重优化模型模型量化
Meta-Llama-3-8B-Instruct模型经INT8量化优化后,参数位数从16位降至8位,减少约50%磁盘空间和GPU内存占用。在OpenLLM基准测试中,量化模型平均得分68.69,与原版68.54分相当。模型支持vLLM和transformers框架部署,适用于英语环境中商业和研究领域的AI助手应用。
Llama-3.2-11B-Vision-Instruct - 高效训练和部署具有多语言能力的大规模语言模型
GithubHuggingfaceLlama 3.2MetaUnsloth大语言模型开源项目模型模型微调
Llama-3.2-11B-Vision-Instruct是Meta开发的多语言大规模视觉语言模型,具备强大的对话和图像理解能力。该项目采用Unsloth技术,实现训练速度提升2.4倍,内存使用减少58%。模型支持英语、德语、法语等多种语言,适用于对话、检索、摘要等任务。项目提供简单易用的Colab笔记本,方便开发者进行模型微调和部署。Llama-3.2系列在多项行业基准测试中表现出色,超越了许多开源和闭源的对话模型。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2语言模型微调加速与优化工具
GithubHuggingfaceLlama-3.2人工智能大语言模型开源项目模型模型训练自然语言处理
该项目针对Meta的Llama 3.2-1B-Instruct模型提供开源微调解决方案。通过Unsloth技术,实现2-5倍训练速度提升和70%内存节省。项目提供多种量化版本的GGUF模型文件,支持Llama 3.2、Gemma 2等主流大语言模型。免费Google Colab笔记本便于用户进行微调和部署。适合需要高效定制大语言模型的开发者和研究人员使用。
Meta-Llama-3.1-8B-Instruct-GGUF - Llama 3.1 8B多语言AI模型 具备128K上下文处理能力
GithubHuggingfaceLlama 3.1Meta多语言大语言模型开源开源项目模型
Meta-Llama-3.1-8B-Instruct-GGUF是Llama 3系列的最新版本,在多语言处理方面性能优异。该模型具有128K上下文窗口,经过15T token训练,包含2500万合成样本。作为开源领域的先进模型,它适用于广泛的AI任务。LM Studio用户可通过'Llama 3'预设轻松应用这一模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号