Project Icon

Vikhr-Nemo-12B-Instruct-R-21-09-24

全新升级的俄英双语大语言模型 内置RAG检索增强功能

Vikhr-Nemo-12B-Instruct-R是一个基于Mistral-Nemo的开源语言模型,针对俄语和英语进行了深度优化。模型通过SFT和SMPO方法训练,具备推理分析、文本生成、代码编写等多项能力。其特色在于支持RAG检索增强和128K长文本处理,在俄语基准测试中接近gpt-4o-mini水平。该项目完全开源,包含训练代码和数据集。

Mistral-7B-Instruct-v0.3-AWQ - Mistral模型AWQ量化版支持高级函数调用和三代分词
AWQ量化GithubHuggingfaceMistral-7B-Instruct-v0.3大语言模型开源项目模型模型量化自然语言处理
作为Mistral-7B-Instruct-v0.3的AWQ量化版本,该模型采用4比特压缩技术,在提供快速推理性能的同时保持了原有精度。通过扩展词汇表和引入第三代分词技术,增强了模型的理解能力。目前已集成到主流AI框架平台,可在搭载NVIDIA显卡的Linux或Windows系统上运行。
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF - 结合多模型的量化文本生成引擎
GithubHuggingfaceNSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1transformers开源项目文本生成模型模型合并量化
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF是利用llama.cpp开发的量化模型,整合了mistralai和athirdpath的两款7B模型。通过slerp合并法和bfloat16数据类型,该项目优化了文本生成任务的性能。用户可以通过Transformers和Accelerate库在Python中完成文本生成。该模型结合了多模型的优点,专为处理复杂文本生成任务而设计,提供了高效的运行性能。
c4ai-command-r-08-2024 - C4AI Command R 08-2024的多语言生成与推理能力
C4AIGithubHuggingface多语言生成大规模语言模型工具调用开源项目检索增强生成模型
C4AI Command R 08-2024是一个研究发布的32亿参数语言模型,优化于多种用例如推理、总结与问答,支持多语言生成,在23种语言中训练,并在10种语言中评估。该模型具备检索增强生成能力,可基于文档片段生成带引文的响应。相关能力通过监督和偏好微调实现,提升用户体验与安全性。详情请访问Cohere For AI平台。
Mistral-NeMo-Minitron-8B-Base - 高效压缩的大规模语言模型适用于多种自然语言生成任务
GithubHuggingfaceMistral-NeMo人工智能大语言模型开源项目模型模型压缩自然语言处理
Mistral-NeMo-Minitron-8B-Base是一个经过剪枝和蒸馏的基础文本生成模型。它采用4096维嵌入、32个注意力头、11520维MLP中间层和40层结构,结合分组查询注意力和旋转位置编码技术。该模型在MMLU等基准测试中表现优异,适用于多种自然语言生成任务。支持8k字符输入,可通过Transformers库轻松使用。
ruRoPEBert-e5-base-2k - 俄语句子编码模型支持长上下文和高效注意力机制
CulturaXGithubHuggingfaceTransformersruRoPEBert俄语句向量模型开源项目模型
ruRoPEBert是Tochka AI团队基于RoPEBert架构开发的俄语句子编码模型。该模型在CulturaX数据集上训练,支持2048个token的上下文,并可扩展。模型集成高效注意力机制和平均池化层,易于使用。在encodechka基准测试中,ruRoPEBert的S+W评分领先其他模型。此外,它还支持分类任务,并可通过RoPE缩放扩展上下文窗口。
Mistral-7B-v0.3 - 扩展词汇量提升语言模型能力
GithubHuggingfaceMistral-7B-v0.3transformers大语言模型开源项目扩展词汇表文本生成模型
Mistral-7B-v0.3是Mistral-7B-v0.2的升级版本,词汇量扩展至32768。该模型保持原有性能,提供更广泛的语言理解能力。支持mistral-inference和Hugging Face transformers等多种安装使用方式。目前尚无审核机制,Mistral AI团队正与社区合作,探索在保证输出质量的同时实现精细保护措施的方法。
OpenHermes-2-Mistral-7B - 基于Mistral-7B的高性能多任务语言模型
GithubHuggingfaceMistralOpenHermes人工智能开源项目模型语言模型
OpenHermes-2-Mistral-7B是一款经过精心微调的大语言模型,基于Mistral-7B架构开发。模型在GPT4All、AGIEval等多个基准测试中表现优异,具备出色的多任务处理能力。支持ChatML格式和系统提示,适用于多轮对话场景。项目开源多种量化版本,方便用户根据需求部署使用。
rubert-tiny2 - 优化的俄语自然语言处理模型
BERTGithubHuggingface俄语模型句子嵌入开源项目文本相似度模型自然语言处理
作为rubert-tiny的改进版本,rubert-tiny2是一个精简的俄语BERT编码器。它拥有更大的词汇表和更长的序列支持,能更好地逼近LaBSE嵌入效果。该模型可直接用于生成句子嵌入或进行下游任务微调,适用于短文本KNN分类等应用场景。通过与transformers和sentence_transformers库的无缝集成,rubert-tiny2为俄语自然语言处理任务提供了简便而强大的工具。
Ministral-8B-Instruct-2410 - 多功能高效语言模型,兼具多语言和代码处理能力
GithubHuggingfaceMinistral-8B-Instruct-2410Mistral AI开源项目授权使用模型研究目的许可证
Ministral-8B-Instruct-2410是一款高效的语言模型,具有128k上下文窗口、函数调用支持和多语言代码训练等特点,显著提升同类模型性能。该模型适用于本地智能设备和边缘计算,经过针对性优化以提升多语言和代码处理能力。根据Mistral Research License,该模型适用于非商业研究。Ministral-8B在知识、常识、代码、数学及多语言基准测试中表现优异,为广泛应用提供了强大的支持。
wav2vec2-large-xlsr-53-russian - 基于XLSR-53的俄语语音识别微调模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53俄语开源项目模型语音识别
该项目是一个基于wav2vec2-large-xlsr-53的俄语语音识别微调模型。经Common Voice 6.1和CSS10数据集训练,适用于16kHz采样的语音输入。模型在Common Voice ru测试集上实现13.3%词错误率和2.88%字符错误率,加入语言模型后性能提升至9.57%和2.24%。支持通过HuggingSound库或自定义脚本使用,可应用于多种俄语语音识别场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号