Project Icon

MiNLP

迈向智能文本解析的先进中文自然语言处理平台

小米自然语言处理平台(MiNLP)涵盖词法、句法和语义分析模块,已在公司业务中广泛应用。MiNLP-Tokenizer中文分词工具自2020年11月开源以来不断优化。2021年计划开源词性标注和命名实体识别工具,并逐步开源句法和语义分析工具,致力于打造功能领先的NLP平台。duckling-fork-chinese专注于中文结构化解析,广泛应用于小爱生产环境,尤其在数字和时间解析方面表现出色。

Tinq.ai - 多功能NLP工具包,助力开发者轻松实现文本分析
AI工具AI应用API开发者工具文本分析自然语言处理
Tinq.ai为开发者提供全栈文本分析和自然语言处理API解决方案。支持情感分析、命名实体识别、文本分类等多种NLP任务,通过RESTful API轻松集成。已获6000多名开发者信赖,适用于各种规模项目,提供灵活定价。Tinq.ai致力于简化文本分析实现过程,助力开发者快速应用NLP技术,打造智能化应用。
Chinese-LLaMA-Alpaca - 中文NLP开源模型,深化语义理解与执行技术
Github中文Alpaca中文LLaMA大模型开源开源项目指令精调
Chinese-LLaMA-Alpaca-3项目致力于提升中文NLP的处理效率和效果,通过扩展中文词表并使用中文数据进行二次预训练,大幅增强了中文文本的编解码能力。该项目提供了完善的模型下载、部署和训练指导,支持多种生态系统和快速本地部署,适合高质量文本生成和多轮对话任务。同时,通过开源和社区合作,推动开源大模型技术研究及应用。
MINI_LLM - 完整中文大语言模型训练流程实践
DPOGithubMini-llm大模型开源项目微调预训练
MINI_LLM项目展示了完整的中文大语言模型训练流程,涵盖预训练、SFT指令微调和DPO优化阶段。该项目基于QWEN模型,利用多种数据集训练出1.4B参数规模的模型。项目详细介绍了数据处理方法、提供训练脚本,并包含多GPU训练指南,为中文大语言模型开发提供了实用参考。
semantic-chunkers - 智能多模态分块库 提高AI数据处理效率和准确性
AI数据处理GithubSemantic Chunkers多模态分块开源项目智能分块视频处理
Semantic Chunkers是一个开源的多模态分块库,专注于对文本、视频和音频进行智能分块。通过语义分析,这个Python库提高了AI和数据处理的效率与准确性。它提供视频分块等功能,并得到活跃社区的支持和持续更新。对于处理大量多媒体数据的AI开发者和研究人员而言,Semantic Chunkers提供了强大的数据处理能力。
ansj_seg - 精准高效的中文分词工具
AnsjCRFGithubHMM中文分词开源项目自然语言处理
Ansj中文分词是一个基于n-Gram、CRF和HMM的Java实现,具有每秒约200万字的高效分词能力,准确率超过96%。其功能包括中文分词、姓名识别、自定义词典、关键字提取、自动摘要和关键词标记,适用于对分词效果要求高的自然语言处理项目。
PaddleNLP - 支持大语言模型开发与部署的开源套件
GithubPaddleNLP大模型开源项目推理训练飞桨
PaddleNLP是基于飞桨框架开发的大语言模型套件,提供全面的训练、精调、压缩和部署功能。支持多硬件环境,包括4D并行配置和高效精调策略,适应多种硬件平台,有效降低开发门槛。兼容LLaMA、Bloom等多种主流模型,为大模型开发提供高效解决方案。
LabelLLM - 开源数据标注平台 优化LLM开发流程
GithubLabelLLM人工智能多模态开源开源项目数据标注平台
LabelLLM是一个开源数据标注平台,旨在优化大型语言模型(LLM)开发中的数据标注流程。该平台提供灵活配置、多模态数据支持、全面任务管理和AI辅助标注功能。LabelLLM适合独立开发者和中小型研究团队使用,可显著提高数据标注效率,为LLM训练数据准备提供有力支持。
nlp - NLP基础知识与应用案例介绍
GithubNLPfasttext开源书籍开源项目机器学习自然语言处理
介绍自然语言处理(NLP)的基础知识和实际应用,包括常用数据集、机器学习模型评价方法、词袋模型、TFIDF、Word2Vec、Doc2Vec等技术,以及多层感知机、fasttext和LDA在文档分类和主题建模中的应用。还展示了对美食评语的情感分析,说明了NLP在文本理解与安全领域的重要性。此外,还介绍了一本开源NLP入门书籍的写作和更新过程,适合想深入了解NLP技术的读者。
albert-tiny-chinese-ws - 轻量级ALBERT模型实现繁体中文分词
ALBERTCKIPGithubHuggingfaceTransformers开源项目模型繁体中文自然语言处理
albert-tiny-chinese-ws是CKIP Transformers项目开发的轻量级预训练模型,专门用于繁体中文分词任务。该模型基于ALBERT架构,具有处理速度快、准确度高的特点,适合大规模繁体中文文本处理。除分词外,CKIP Transformers还提供BERT、GPT2等多种繁体中文自然语言处理模型。为获得最佳性能,推荐使用BertTokenizerFast作为分词器。
markup - 基于机器学习的智能文档标注工具 提高NLP任务效率
GithubMarkup开源项目本体映射机器学习标注工具自然语言处理
Markup是一款基于机器学习的在线文档标注工具,专为自然语言处理任务设计。它通过预测性标注技术提供复杂标注建议,提高工作效率。工具集成常用和自定义本体库,支持概念映射。Markup界面友好,适合技术专家和新手使用,能快速将非结构化文档转化为结构化格式。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号