Project Icon

conformal-prediction

严谨量化机器学习不确定性的开源框架

Conformal Prediction 是一个开源项目,提供严谨的机器学习不确定性量化方法。项目包含多个即用型示例,涵盖图像分类、回归等应用,无需原始数据和模型即可运行。研究人员和开发者可轻松上手此技术,探索其在实际问题中的应用,为模型增添可靠的不确定性估计。

tonic_validate - LLM和RAG评估框架
GithubLLM评估RAG系统Tonic Validate开源项目性能监测数据安全
Tonic Validate是一个开源的高性能LLM输出和RAG评估框架,通过多种度量方法评估输出的精度和稳定性。它还集成了可视化UI,便于结果追踪与监控,并提供了Tonic Textual工具,以支持RAG系统的数据处理和性能提升。
secretflow - 统一隐私保护数据分析与机器学习框架
GithubSecretFlow密码学协议开源项目数据智能机器学习隐私计算
SecretFlow框架集成了多个隐私计算项目,包括Kuscia、SCQL和SPU等。它通过抽象设备层、设备流层、算法层和工作流层的设计,实现了对水平和垂直分区数据的高效分析。这一开源项目为隐私保护数据分析和机器学习提供了全面的技术支持,推动了隐私计算领域的发展。
mljar-supervised - 开源自动机器学习框架 简化表格数据建模
AutoMLGithubMLJAR开源项目数据分析机器学习模型训练
mljar-supervised是一个专门用于表格数据的开源自动机器学习框架。它可自动完成数据预处理、模型构建和超参数调优,生成详细的Markdown报告解释每个模型。该框架提供多种工作模式,包括数据解释、生产部署、竞赛优化等。支持多种算法并具备模型集成功能,能有效简化数据科学工作流程,帮助用户快速构建高质量机器学习模型。
KL-Loss - 创新边界框回归提升物体检测精度
CVPRGithubKL-Loss不确定性开源项目目标检测边界框回归
KL-Loss提出了一种新型边界框回归损失函数,同时学习边界框变换和定位方差。该方法显著提高了物体检测的定位精度,几乎不增加计算量。在MS-COCO数据集上,KL-Loss将多种检测架构的平均精度(AP)提升1.8%-5.5%,尤其在高IoU阈值下表现出色,大幅超越现有方法。
autogluon - 自动化机器学习工具,简单实现高精度预测
AutoGluonGithubPython开源项目机器学习深度学习自动化
AutoGluon简化了机器学习任务,让用户可以在图像、文本、时间序列和表格数据上轻松训练和部署高精度模型。它支持Python 3.8至3.11,并可在Linux、MacOS和Windows上运行。只需几行代码即可快速构建端到端机器学习模型,提供详细的安装指南、快速入门教程和丰富的资源,适合各层次用户的需求。
powerful-benchmarker - 高效模型基准测试工具,支持无监督域适应和度量学习
GithubPowerful Benchmarker域适应安装指南开源项目指标学习文件组织
提供功能强大的模型基准测试工具,适用于无监督域适应和度量学习,特色包括三种新验证方法和大规模基准排名。项目提供简便的安装步骤、路径设置和丰富的脚本支持,同时还包含Jupyter notebooks、各种脚本和测试代码,确保实验顺利进行。
ect - 开源框架实现高效一致性模型生成
ECTGithub一致性模型图像生成开源项目深度学习生成模型
ECT是一个开源框架,采用简单原则方法实现少步生成能力。该框架仅需小幅调优即可获得显著效果,并随训练计算量增加持续提升性能。ECT允许自定义一致性模型,在CIFAR10数据集上通过1-2步迭代生成高质量图像,性能超越先进扩散模型和GAN。
latent-consistency-model - 高效快速的少步推理图像合成模型
AI绘图GithubLatent Consistency Models图像生成开源项目扩散模型深度学习
Latent Consistency Models (LCM) 是一种创新的图像生成技术,通过将分类器自由引导蒸馏到模型输入中,实现高效的少步推理。LCM支持文本到图像和图像到图像的生成,在极短时间内生成高质量图像,同时提供多种易用的演示。该技术在保持图像质量的同时显著缩短推理时间,为实时图像生成提供了新的可能性。
shap - 通过博弈论解释机器学习模型输出的实用工具
GithubSHAP开源项目机器学习特征影响算法解释模型
SHAP(SHapley Additive exPlanations)采用博弈论中的Shapley值进行机器学习模型输出解释,支持包括树模型、深度学习及自然语言处理模型,提供丰富的可视化工具以清晰显示模型决策过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号