Project Icon

QDax

高效加速质量多样性算法的开源框架

QDax是一个开源框架,用于加速质量多样性(QD)和神经进化算法。通过利用硬件加速器和大规模并行化,QDax将原本需要数天甚至数周才能在大型CPU集群上完成的QD算法运行时间缩短至几分钟。作为灵活易扩展的研究工具,QDax适用于各类问题设置,支持MAP-Elites、QDPG等多种核心QD算法,并提供多个基准任务实现。该项目由Adaptive & Intelligent Robotics Lab和InstaDeep联合开发维护。

qdax_logo

QDax: 加速的质量多样性算法

文档状态 pytest 许可证: MIT codecov

QDax是一个通过硬件加速器和大规模并行化来加速质量多样性(QD)和神经进化算法的工具。QD算法通常需要在大型CPU集群上运行数天/数周。使用QDax,QD算法现在可以在几分钟内完成!⏩ ⏩ 🕛

QDax被开发为一个研究框架:它灵活易扩展,可用于任何问题设置。从这里开始简单示例,几分钟内运行QD算法!在Colab中打开

安装

QDax可在PyPI上获取,使用以下命令安装:

pip install qdax

或者,可以直接从源代码安装QDax的最新提交:

pip install git+https://github.com/adaptive-intelligent-robotics/QDax.git@main

通过pip安装QDax默认安装仅CPU版本的JAX。要在NVidia GPU上使用QDax,您必须先安装CUDA、CuDNN和支持GPU的JAX

然而,我们还提供并推荐使用Docker或conda环境来使用该仓库,默认提供GPU支持。详细步骤可在文档中找到。

基本API使用

要全面了解QDax的工作原理,我们建议从教程风格的Colab笔记本开始。这是一个使用MAP-Elites算法在选定的Brax环境(默认为Walker)中进化控制器群体的示例。

以下是主要API使用的摘要:

import jax
import functools
from qdax.core.map_elites import MAPElites
from qdax.core.containers.mapelites_repertoire import compute_euclidean_centroids
from qdax.tasks.arm import arm_scoring_function
from qdax.core.emitters.mutation_operators import isoline_variation
from qdax.core.emitters.standard_emitters import MixingEmitter
from qdax.utils.metrics import default_qd_metrics

seed = 42
num_param_dimensions = 100  # 机械臂自由度数量
init_batch_size = 100
batch_size = 1024
num_iterations = 50
grid_shape = (100, 100)
min_param = 0.0
max_param = 1.0
min_bd = 0.0
max_bd = 1.0

# 初始化随机密钥
random_key = jax.random.PRNGKey(seed)

# 初始化控制器群体
random_key, subkey = jax.random.split(random_key)
init_variables = jax.random.uniform(
    subkey,
    shape=(init_batch_size, num_param_dimensions),
    minval=min_param,
    maxval=max_param,
)

# 定义发射器
variation_fn = functools.partial(
    isoline_variation,
    iso_sigma=0.05,
    line_sigma=0.1,
    minval=min_param,
    maxval=max_param,
)
mixing_emitter = MixingEmitter(
    mutation_fn=lambda x, y: (x, y),
    variation_fn=variation_fn,
    variation_percentage=1.0,
    batch_size=batch_size,
)

# 定义度量函数
metrics_fn = functools.partial(
    default_qd_metrics,
    qd_offset=0.0,
)

# 实例化MAP-Elites
map_elites = MAPElites(
    scoring_function=arm_scoring_function,
    emitter=mixing_emitter,
    metrics_function=metrics_fn,
)

# 计算质心
centroids = compute_euclidean_centroids(
    grid_shape=grid_shape,
    minval=min_bd,
    maxval=max_bd,
)

# 初始化库和发射器状态
repertoire, emitter_state, random_key = map_elites.init(init_variables, centroids, random_key)

# 运行MAP-Elites循环
for i in range(num_iterations):
    (repertoire, emitter_state, metrics, random_key,) = map_elites.update(
        repertoire,
        emitter_state,
        random_key,
    )

# 获取库内容
repertoire.genotypes, repertoire.fitnesses, repertoire.descriptors

QDax核心算法

QDax目前支持以下算法:

QDax基准算法

QDax库还提供了一些有用的基准算法实现:

QDax任务

QDax库还为多个标准质量多样性任务提供了众多实现。

所有这些实现及其描述都在任务目录中提供。

贡献

欢迎提出问题和贡献。更多详细信息请参阅文档中的贡献指南

相关项目

引用QDax

如果您在研究中使用了QDax并想在您的工作中引用它,请使用:

@misc{chalumeau2023qdax,
    title={QDax: A Library for Quality-Diversity and Population-based Algorithms with Hardware Acceleration},
    author={Felix Chalumeau and Bryan Lim and Raphael Boige and Maxime Allard and Luca Grillotti and Manon Flageat and Valentin Macé and Arthur Flajolet and Thomas Pierrot and Antoine Cully},
    year={2023},
    eprint={2308.03665},
    archivePrefix={arXiv},
    primaryClass={cs.AI}
}

贡献者

QDax由自适应智能机器人实验室(AIRL)InstaDeep开发和维护。

AIRL_Logo InstaDeep_Logo
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号