Project Icon

electra_large_discriminator_squad2_512

ELECTRA大型判别器模型在SQuAD2.0数据集上的问答系统微调

electra_large_discriminator_squad2_512是基于ELECTRA大型判别器模型在SQuAD2.0数据集上微调的问答系统。该模型在精确匹配和F1分数上分别达到87.10%和89.98%。它使用PyTorch和Transformers库实现,最大序列长度为512,经3轮训练后展现出优秀的问答性能。该项目还提供了详细的训练脚本和系统环境信息,便于其他研究者复现和改进。

e5-large - 句子嵌入模型应用于文本分类与检索,提升准确率
GithubHuggingfaceMTEBSentence Transformerssentence-similarity分类开源项目检索模型
项目利用Sentence Transformers技术,提升自然语言处理任务中的句子嵌入效率,涵盖分类、检索、聚类及重排序等。该模型在多数据集上优异,尤其是在Amazon极性分类的准确率达90.05%。通过优化句子相似性,增强了在BIOSSES等任务中的相关性得分,是语义搜索和信息检索的理想之选,支持多语言文本分析。
bert-mini-finetune-question-detection - BERT-mini模型实现关键词与问题查询的精准分类
BERTGithubHaystackHuggingfaceKaggle开源项目查询分类模型神经搜索
该项目基于BERT-mini开发了一个用于区分关键词查询和问题/陈述查询的模型。在Haystack框架中,该模型实现了99.7%的测试准确率,能够准确将问题路由至Reader分支,提升结果精确度并降低计算开销。模型可通过简洁的Python代码轻松集成,适用于需要高效查询分类的神经搜索系统。
TriviaAnsweringMachineREAL - 开发智能问答求解平台以应对学术问答挑战
GithubHuggingfaceQuiz bowl多样性开源项目模型竞赛问答系统问题写作
本项目旨在开发一个AI问答系统,通过解决学术竞赛中的问题来迎接挑战。参与者可以提交模型进行对比,并开发具有难度的对抗性问题,覆盖领域包括艺术、文学和科学。项目鼓励使用外部数据和软件,并在Dynabench平台进行模型评估,推动数据资源共享。除了取得排行榜领先以外,项目还包括撰写多领域的对抗性问题,测试现代NLP系统的局限性,同时保证问题的事实准确性和多样性,以便评估人类与计算机的解题准确性差距。
dictalm2.0-instruct-fine-tuned - 优化的希伯来语问答生成模型
GithubHuggingfaceronigold/dictalm2.0-instruct-fine-tuned希伯来语开源项目模型模型微调自然语言处理问题答案生成
本项目提供了一种专门针对希伯来语问答生成而优化的模型,适用于教育和信息化应用。通过从希伯来语维基百科提取数据进行微调,增强了模型生成自然问答对的能力。在使用于敏感领域时,建议引入人工监督以规避潜在训练数据偏见造成的问题。
Llama3-Med42-8B - 临床大模型开创医学问答新时代
GithubHuggingfaceLLMMed42-v2健康医疗医疗大模型开源项目模型问答系统
Med42-v2套件提供访问8亿或70亿参数的临床大语言模型,通过LLaMA-3开发,其在医学问答任务中的表现卓越,特别是Med42-v2-70B,在MCQA任务中超越了GPT-4.0,位居临床Elo评分榜首,并在MedQA零样本测试中取得79.10的优秀成绩。目前,该模型尚需进一步评估以确保安全,并计划应用于医疗问答、患者记录总结等领域,以增强临床决策支持。
rag-token-nq - RAG技术驱动的智能问答生成模型
GithubHuggingfaceRAGtransformer开源项目模型知识检索自然语言处理问答系统
RAG-token-nq是一个结合DPR和BART技术的智能问答模型,通过检索wiki_dpr数据集实现知识增强。模型包含问题编码器、检索器和生成器,能够针对事实性问题生成准确答案。基于uncased处理机制,该模型在知识密集型自然语言处理任务中表现优异。
ms-marco-electra-base - ELECTRA跨编码器模型提升MS Marco信息检索效率
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
该模型是基于ELECTRA架构的跨编码器,专为MS Marco段落排序任务设计。其主要功能是高效编码查询和段落,用于信息检索的检索和重排序。模型在TREC Deep Learning 2019数据集上达到71.99的NDCG@10分数,MS Marco开发集上MRR@10为36.41,处理速度为每秒340文档。这些指标显示该模型在性能和效率方面达到了良好平衡。
neural-chat-7b-v3-1 - 在英特尔Gaudi2上优化的mistralai 7B语言模型
GithubHuggingfaceIntel Gaudi 2大语言模型开源项目数据集模型模型微调量化推理
neural-chat-7b-v3-1模型经过优化,利用mistralai/Mistral-7B-v0.1基础模型和DPO方法,适用于多种语言任务。结合Open-Orca/SlimOrca数据集,提升了ARC、HellaSwag与TruthfulQA等多项评估指标表现,并支持INT4、BF16等多种推理模式。非常适合高性能语言生成与处理应用,详细信息和使用指导可在GitHub和Hugging Face Leaderboard上查看。
quora-roberta-base - 基于RoBERTa的Quora问题重复识别跨编码器
GithubHuggingfaceQuora开源项目文本分类模型跨编码器重复问题问题检测
该跨编码器模型基于RoBERTa-base架构,专为识别Quora平台上的重复问题而设计。通过SentenceTransformers框架训练,模型能为问题对预测0-1范围内的相似度分数。虽然在Quora重复问题数据集上表现出色,但仅适用于检测语义相近的问题,不适合评估一般性相似度。模型集成简便,几行代码即可在项目中实现。
korean_sentiment_analysis_kcelectra - 基于KcELECTRA的韩语情感分析模型及其结果
GithubHuggingfacekorean_sentiment_analysis_kcelectra开源项目情感分析机器学习模型深度学习自然语言处理
该页面详细介绍了微调后的KcELECTRA-base-v2022模型在韩语情感分析中的应用。模型在评估集上实现了损失值0.9718、微平均F1分数70.7183和准确率0.7072。使用Adam优化器和线性学习率策略进行训练,关键参数包括学习率2e-05和总批次大小256。该项目为需要实施韩语情感分析的开发者提供了实用的模型性能提升和优化范例。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号