Project Icon

IndicNER

面向11种印度语言的多语言命名实体识别模型

IndicNER是一个针对11种印度语言开发的命名实体识别模型。该模型通过数百万句子的微调训练,并在人工标注测试集和多个公开数据集上进行了性能评估。IndicNER支持阿萨姆语、孟加拉语、古吉拉特语等多种印度语言,能够有效识别句子中的命名实体。作为一个基于最新深度学习技术的工具,IndicNER为印度语言的自然语言处理研究和应用提供了有力支持。

indobert-model-ner - IndobertNER:基于BERT的印度尼西亚语命名实体识别模型
GithubHuggingfaceIndoBERT命名实体识别开源项目模型模型微调深度学习自然语言处理
IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。
IndicBERTv2-MLM-only - 支持23种印度语言和英语的大规模多语言预训练模型
GithubHuggingfaceIndicBERT印度语言多语言模型开源项目机器学习模型自然语言处理
IndicBERTv2-MLM-only是一个支持23种印度语言和英语的大规模多语言预训练模型。该模型基于IndicCorp v2数据集训练,包含2.78亿参数,采用掩码语言模型(MLM)目标。在IndicXTREME基准测试中,模型展现出优秀的多语言和零样本迁移能力。作为印度语言自然语言处理的重要资源,IndicBERTv2-MLM-only有望推动相关研究,缩小印度语言在NLP领域的差距。
indic-bert - 专注印度12种语言的轻量级ALBERT预训练模型
GithubHuggingfaceIndicBERT印度语言多语言模型开源项目模型自然语言处理预训练模型
IndicBERT是一个基于ALBERT架构的多语言预训练模型,支持包括印地语、泰米尔语在内的12种印度主要语言。模型使用90亿规模的语料库训练,具有参数量小、性能优异的特点。在多项NLP评估任务中,其表现优于或持平于mBERT、XLM-R等主流多语言模型。
chatbot_ner - 提供多语言支持的开源聊天机器人实体识别框架
API结构Chatbot NERConversational AIGithub印度语言支持实体识别开源项目
Chatbot NER是一个开放源代码框架,专为会话AI设计,支持在文本中进行实体识别。它目前支持英语、印地语、古吉拉特语、马拉地语、孟加拉语和泰米尔语及其混合形式。通过使用常见模式和NLP技术,能够从语言的稀疏数据中提取必要的实体。Haptik团队正在扩展其支持范围到所有印度语言及其方言。该框架的API结构易于使用,特别适合会话式AI应用,并且提供详尽的文档以便用户设置和操作。
indictrans2-en-indic-1B - 支持22种印度官方语言双向翻译的开源机器翻译模型
GithubHuggingfaceIndicTrans2人工智能印度语言多语言模型开源项目机器翻译模型
IndicTrans2是一个开源机器翻译模型,专注于英语和22种印度官方语言之间的翻译。该模型基于Transformer架构,拥有11亿参数,支持多种印度文字系统,包括印地文、泰米尔文和泰卢固文等。IndicTrans2提供HuggingFace接口,便于开发者集成使用。模型在多个翻译基准测试中表现出色,适用于各种印度语言翻译场景。
gliner_multi - 灵活识别多语言实体的开源NER模型
GLiNERGithubHuggingface命名实体识别多语言模型开源项目机器学习模型自然语言处理
GLiNER-multi是一个基于双向Transformer架构的开源多语言命名实体识别模型。它能够灵活识别各种实体类型,填补了传统NER模型与大型语言模型之间的空白。该模型在Pile-NER数据集上训练,支持多语言处理,易于集成到不同的自然语言处理应用中。GLiNER-multi在保证性能的同时优化了模型规模,适用于计算资源有限的场景。
ChineseNER - 多模型支持的中文命名实体识别开源项目
Github中文NER命名实体识别多任务学习开源项目深度学习模型词汇增强
这是一个开源的中文命名实体识别项目,集成了多种深度学习模型。从BiLSTM-CRF到BERT-BiLSTM-CRF,再到多任务学习模型,涵盖了NER领域的主流算法。项目特色包括词汇增强、数据增强和MRC框架等创新功能。同时提供了完整的训练、评估流程和Docker部署方案,便于研究者和开发者使用。项目集成了从BiLSTM-CRF到BERT系列的多种NER模型,并创新性地引入词汇增强、数据增强和MRC框架等技术。不仅提供了详细的模型训练和评估指南,还支持Docker部署,方便研究人员和工程师快速应用到实际场景中。
bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
wikineural-multilingual-ner - 融合神经网络和知识库的多语言命名实体识别模型
GithubHuggingfaceWikiNEuRal命名实体识别多语言开源项目模型维基百科自然语言处理
WikiNEuRal是一个创新的多语言命名实体识别模型,基于自动生成的高质量数据集训练而成。该模型支持9种语言,通过结合神经网络和知识库方法,在标准NER基准测试中实现了显著突破,F1分数比现有系统提高了6个点。模型集成了Transformers库,便于快速部署和使用。尽管在百科全书类文本上表现出色,但对新闻等其他文体的泛化能力可能有限。
arabic-ner - 阿拉伯语BERT命名实体识别模型支持九大类型
BERTGithubHugging FaceHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语
该阿拉伯语命名实体识别模型基于BERT预训练,可识别9种实体类型,包括人名、组织、地点等。模型使用37.8万标记的语料训练,在3万标记验证集上F1分数达87%。项目提供完整示例,适用于多种阿拉伯语自然语言处理任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号