Project Icon

indic-bert

专注印度12种语言的轻量级ALBERT预训练模型

IndicBERT是一个基于ALBERT架构的多语言预训练模型,支持包括印地语、泰米尔语在内的12种印度主要语言。模型使用90亿规模的语料库训练,具有参数量小、性能优异的特点。在多项NLP评估任务中,其表现优于或持平于mBERT、XLM-R等主流多语言模型。

IndicBERTv2-MLM-only - 支持23种印度语言和英语的大规模多语言预训练模型
GithubHuggingfaceIndicBERT印度语言多语言模型开源项目机器学习模型自然语言处理
IndicBERTv2-MLM-only是一个支持23种印度语言和英语的大规模多语言预训练模型。该模型基于IndicCorp v2数据集训练,包含2.78亿参数,采用掩码语言模型(MLM)目标。在IndicXTREME基准测试中,模型展现出优秀的多语言和零样本迁移能力。作为印度语言自然语言处理的重要资源,IndicBERTv2-MLM-only有望推动相关研究,缩小印度语言在NLP领域的差距。
indictrans2-en-indic-1B - 支持22种印度官方语言双向翻译的开源机器翻译模型
GithubHuggingfaceIndicTrans2人工智能印度语言多语言模型开源项目机器翻译模型
IndicTrans2是一个开源机器翻译模型,专注于英语和22种印度官方语言之间的翻译。该模型基于Transformer架构,拥有11亿参数,支持多种印度文字系统,包括印地文、泰米尔文和泰卢固文等。IndicTrans2提供HuggingFace接口,便于开发者集成使用。模型在多个翻译基准测试中表现出色,适用于各种印度语言翻译场景。
indobert-base-p2 - IndoBERT:印尼语自然语言处理的先进模型
GithubHuggingfaceIndoBERT印尼语开源项目机器学习模型自然语言处理语言模型
IndoBERT是一个基于BERT的尖端模型,专为印度尼西亚语言设计。它通过遮蔽语言模型和句子预测进行预训练。使用Indo4B数据集,该模型在Base和Large架构中实现,参数从11.7M到335.2M不等,适用于多种自然语言处理任务。用户可以使用Transformers库轻松加载IndoBERT,提取上下文表示,增强印尼语处理的准确性和效率,广泛适用于研究和实践。
IndicNER - 面向11种印度语言的多语言命名实体识别模型
GithubHuggingfaceIndicNER印度语言命名实体识别多语言模型开源项目模型自然语言处理
IndicNER是一个针对11种印度语言开发的命名实体识别模型。该模型通过数百万句子的微调训练,并在人工标注测试集和多个公开数据集上进行了性能评估。IndicNER支持阿萨姆语、孟加拉语、古吉拉特语等多种印度语言,能够有效识别句子中的命名实体。作为一个基于最新深度学习技术的工具,IndicNER为印度语言的自然语言处理研究和应用提供了有力支持。
indobert-base-uncased - 印尼语BERT模型提升NLP任务表现
GithubHuggingfaceIndoBERT印尼语句法分析开源项目情感分析模型语言模型
IndoBERT是为印尼语开发的BERT模型,经过2.4百万步的训练,使用了超过2.2亿字的数据来源于印尼维基百科与新闻和网络语料库。该模型在词性标注、命名实体识别等印尼语NLP任务中表现优异,表现高于其他模型。IndoBERT的卓越性能在印尼语基准测试IndoLEM中得到验证,并可通过transformers库加载使用。
indictrans2-indic-indic-dist-320M - 支持22种印度语言的机器翻译模型
AI4BharatGithubHuggingfaceIndicTrans2多语言开源项目机器学习模型翻译
IndicTrans2 是一款支持22种印度语言之间翻译的机器翻译模型,结合了多语言模型优化以提升翻译效率。此开源项目利用BLEU、CHRF和COMET等AI技术指标提升翻译准确性,适用数据集包括FLORES-200。项目采用MIT许可协议,适用于多领域的研究与应用。
indobert-base-p1 - IndoBERT基于BERT架构的印尼语预训练模型
GithubHuggingfaceIndo4BIndoBERT印尼语开源项目模型自然语言处理预训练模型
indobert-base-p1是基于BERT架构的印尼语预训练模型,在23.43GB的Indo4B语料库上训练。该模型采用掩码语言建模和下一句预测目标,包含1.245亿参数,适用于多种印尼语自然语言处理任务。研究人员可通过Hugging Face加载模型和分词器,提取上下文表示,为印尼语NLP研究和应用奠定基础。
indobert-model-ner - IndobertNER:基于BERT的印度尼西亚语命名实体识别模型
GithubHuggingfaceIndoBERT命名实体识别开源项目模型模型微调深度学习自然语言处理
IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。
InLegalBERT - 印度法律领域预训练语言模型
GithubHuggingfaceInLegalBERT印度法律开源项目模型法律文本预训练法律领域自然语言处理
InLegalBERT是一个针对印度法律领域的预训练语言模型,基于540万份印度法院文件训练而成。该模型涵盖1950年至2019年间的多个法律领域,在法律条文识别、语义分割和法院判决预测等任务中表现优异。作为印度法律自然语言处理研究的基础工具,InLegalBERT为该领域的发展提供了有力支持。
muril-large-cased - 支持17种印度语言的BERT大规模预训练模型
GithubHuggingfaceMuRIL印度语言多语言开源项目模型自然语言处理预训练模型
MuRIL是基于BERT large架构开发的印度语言预训练模型,支持17种印度语言及其音译版本。模型通过整合翻译数据和音译语料进行训练,在PANX和问答等多项XTREME基准测试中超越XLM-R large的性能表现,可广泛应用于印度语言相关的自然语言处理任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号