Project Icon

indictrans2-indic-en-1B

IndicTrans2提供22种印度本地语言到英语的翻译支持

IndicTrans2是一个开源多语言机器翻译模型,支持22种印度本地语言到英语的翻译。该模型基于FLORES-200和IN22-Gen等数据集进行训练,并使用BLEU和CHRF等指标进行评估。详细的使用指引可通过GitHub获取,翻译任务需引入IndicProcessor。模型在Python环境下,支持CUDA的加速。

indictrans2-en-indic-1B - 支持22种印度官方语言双向翻译的开源机器翻译模型
GithubHuggingfaceIndicTrans2人工智能印度语言多语言模型开源项目机器翻译模型
IndicTrans2是一个开源机器翻译模型,专注于英语和22种印度官方语言之间的翻译。该模型基于Transformer架构,拥有11亿参数,支持多种印度文字系统,包括印地文、泰米尔文和泰卢固文等。IndicTrans2提供HuggingFace接口,便于开发者集成使用。模型在多个翻译基准测试中表现出色,适用于各种印度语言翻译场景。
indictrans2-indic-indic-dist-320M - 支持22种印度语言的机器翻译模型
AI4BharatGithubHuggingfaceIndicTrans2多语言开源项目机器学习模型翻译
IndicTrans2 是一款支持22种印度语言之间翻译的机器翻译模型,结合了多语言模型优化以提升翻译效率。此开源项目利用BLEU、CHRF和COMET等AI技术指标提升翻译准确性,适用数据集包括FLORES-200。项目采用MIT许可协议,适用于多领域的研究与应用。
IndicBERTv2-MLM-only - 支持23种印度语言和英语的大规模多语言预训练模型
GithubHuggingfaceIndicBERT印度语言多语言模型开源项目机器学习模型自然语言处理
IndicBERTv2-MLM-only是一个支持23种印度语言和英语的大规模多语言预训练模型。该模型基于IndicCorp v2数据集训练,包含2.78亿参数,采用掩码语言模型(MLM)目标。在IndicXTREME基准测试中,模型展现出优秀的多语言和零样本迁移能力。作为印度语言自然语言处理的重要资源,IndicBERTv2-MLM-only有望推动相关研究,缩小印度语言在NLP领域的差距。
indic-bert - 专注印度12种语言的轻量级ALBERT预训练模型
GithubHuggingfaceIndicBERT印度语言多语言模型开源项目模型自然语言处理预训练模型
IndicBERT是一个基于ALBERT架构的多语言预训练模型,支持包括印地语、泰米尔语在内的12种印度主要语言。模型使用90亿规模的语料库训练,具有参数量小、性能优异的特点。在多项NLP评估任务中,其表现优于或持平于mBERT、XLM-R等主流多语言模型。
opus-mt-en-hi - 开源英语-印地语Transformer机器翻译模型
GithubHuggingfaceOPUSTatoeba-Challenge印地语开源项目机器翻译模型英语
opus-mt-en-hi是OPUS项目开发的英语到印地语机器翻译模型,基于Transformer架构。模型在Tatoeba测试集上获得16.1 BLEU分数和0.447 chrF分数。它采用SentencePiece进行预处理,适用于多种翻译任务。作为开源资源,该模型为自然语言处理研究和应用开发提供了有价值的工具。
opus-mt-hi-en - 基于OPUS数据集的印地语-英语开源机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hi-en开源项目数据集机器翻译模型语言模型
opus-mt-hi-en是一个开源的印地语到英语机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,采用规范化和SentencePiece进行预处理。在Tatoeba测试集上,模型达到40.4的BLEU分数。项目提供预训练权重下载,便于用户部署和使用。此外,模型还在newsdev2014和newstest2014等测试集上进行了评估,为研究人员提供了性能参考。
IndicNER - 面向11种印度语言的多语言命名实体识别模型
GithubHuggingfaceIndicNER印度语言命名实体识别多语言模型开源项目模型自然语言处理
IndicNER是一个针对11种印度语言开发的命名实体识别模型。该模型通过数百万句子的微调训练,并在人工标注测试集和多个公开数据集上进行了性能评估。IndicNER支持阿萨姆语、孟加拉语、古吉拉特语等多种印度语言,能够有效识别句子中的命名实体。作为一个基于最新深度学习技术的工具,IndicNER为印度语言的自然语言处理研究和应用提供了有力支持。
opus-mt-en-id - 英语至印尼语开源神经机器翻译模型
GithubHuggingfaceopus-mt-en-id开源项目数据集机器翻译模型模型评估自然语言处理
opus-mt-en-id是一个开源的英语到印尼语神经机器翻译模型,基于Transformer架构设计。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到38.3 BLEU分和0.636 chr-F分的性能。项目提供预训练权重和测试集,方便研究人员进行评估和应用。
indic_nlp_library - 全面的印度语言自然语言处理Python库
GithubIndic NLP LibraryPython库印度语言处理开源项目文本处理自然语言处理
indic_nlp_library是一个面向印度语言的Python自然语言处理库。主要功能包括文本规范化、脚本转换、分词、分句和音节划分等。该库利用印度语言在脚本和语法上的共性,为多种印度语言文本处理提供统一解决方案。此外,库中还包含丰富的语言资源和便捷的API接口,可用于各类印度语言文本分析任务。
vinai-translate-en2vi-v2 - VinAI开发的越南语-英语双向神经机器翻译系统
GithubHuggingfaceVinAI Translate开源项目机器翻译模型自然语言处理英语越南语
VinAI开发的越南语-英语双向神经机器翻译系统,提供了两个预训练模型,分别用于越南语到英语和英语到越南语的翻译。系统采用神经网络架构,致力于提高翻译质量。研究人员可通过引用相关论文了解更多技术细节和实验结果。该项目为跨语言交流和自然语言处理研究提供了有价值的资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号