Project Icon

vit-base-cats-vs-dogs

基于Vision Transformer的猫狗图像分类模型

该模型是基于google/vit-base-patch16-224-in21k在cats_vs_dogs数据集上微调的图像分类模型。采用Vision Transformer架构,在评估集上实现98.83%的准确率。模型可用于宠物识别、动物摄影分类等猫狗图像分类任务。开发者可以方便地将其集成到各种应用中,实现高效的猫狗识别功能。

cat-vs-dog-resnet-50 - 基于微调的ResNet-50实现高精度猫狗图像分类
Adam优化GithubHuggingfacemicrosoft/resnet-50图像分类开源项目模型猫狗分类精度
此项目采用微调版的microsoft/resnet-50模型,以其在cats_vs_dogs数据集上达到的0.9654高准确率而表现出色。适合高精度图像识别场景,模型训练过程使用了线性学习率调度器和Adam优化器,确保了结果的稳定与可靠。
resnet-50-finetuned-cats_vs_dogs - ResNet-50微调模型实现高精度猫狗图像分类
GithubHuggingfaceResNet-50图像分类开源项目模型模型微调深度学习猫狗识别
项目利用微软的ResNet-50架构,通过在cats_vs_dogs数据集上进行微调,开发出一个高效的猫狗图像分类模型。训练过程中使用Adam优化器和线性学习率调度器,仅需3个训练周期即达到优异性能:评估集准确率98.93%,验证损失0.0889。这一成果展示了预训练模型在特定图像分类任务中的适应性和高效性。
rorshark-vit-base - ViT架构图像分类模型实现99.23%精度
GithubHuggingfaceViT准确率图像分类开源项目机器学习模型训练模型
rorshark-vit-base是基于google/vit-base-patch16-224-in21k模型微调的图像分类器。该模型采用Vision Transformer架构,在imagefolder数据集上达到99.23%的分类准确率。经过5轮训练,使用Adam优化器和线性学习率调度。虽然在高精度图像分类任务中表现出色,但其具体应用场景和局限性有待进一步研究。
vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
vit-base-patch16-384 - Vision Transformer:基于图像分块的高效视觉识别模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于Transformer架构的视觉识别模型,在ImageNet-21k上进行预训练,并在ImageNet 2012上微调。模型采用图像分块和序列化处理方法,有效处理384x384分辨率的图像。ViT在多个图像分类基准测试中表现优异,适用于各种计算机视觉任务。该预训练模型为研究人员和开发者提供了快速开发高精度图像识别应用的基础。
vit-base-patch16-224 - Vision Transformer图像分类模型在ImageNet数据集上的应用
GithubHuggingfaceImageNetVision Transformer图像分类开源项目机器学习模型神经网络
vit-base-patch16-224是一个基于Vision Transformer架构的图像分类模型,在ImageNet-21k数据集上预训练并在ImageNet 2012上微调。该模型采用16x16像素的图像分块和序列化处理方法,可高效处理224x224分辨率的图像。在多个图像分类基准测试中,vit-base-patch16-224展现出较好的性能,为计算机视觉任务提供了一种基于Transformer的新方案。
vit-base-patch16-224-cifar10 - 视觉Transformer在CIFAR10上的图像分类优化
CIFAR10GithubHuggingfaceVision Transformer图像分类开源项目模型模型微调深度学习
Vision Transformer (ViT) 模型经过ImageNet-21k数据集的预训练,并在CIFAR10数据集上微调,适用于224x224分辨率的图像分类任务。采用16x16像素的固定大小图像补丁进行特征提取,为下游任务提供了有效支持。在GitHub上访问相关代码,了解如何将该技术应用到各种项目中。
vit-base-patch32-224-in21k - Vision Transformer模型在2100万图像数据集上预训练
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于transformer架构的视觉模型,在ImageNet-21k数据集上预训练。该模型将图像转换为固定大小的patch序列,通过线性嵌入和位置编码输入transformer编码器。ViT可应用于图像分类等多种视觉任务,只需在预训练编码器上添加任务特定层。模型在224x224分辨率下训练,批量大小为4096,在多项图像分类基准测试中展现出优秀性能。
vit-large-patch32-384 - 基于Transformer架构的大规模图像分类模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一个基于Transformer架构的大型视觉模型,在ImageNet-21k数据集上预训练,并在ImageNet 2012数据集上微调。模型采用图像分块和序列化处理方法,支持384x384分辨率的输入。ViT在多个图像分类基准测试中表现优异,可用于图像分类、特征提取等计算机视觉任务。该模型支持PyTorch框架,适合研究人员和开发者使用。
vit_small_patch14_reg4_dinov2.lvd142m - 基于自监督学习的视觉Transformer用于图像特征提取和分类
GithubHuggingfaceVision Transformer图像分类图像特征开源项目模型深度学习自监督学习
该Vision Transformer (ViT) 图像特征模型通过自监督学习进行预训练,基于LVD-142M数据集并采用DINOv2方法。模型专为图像分类和特征提取设计,包含22.1M参数和29.6 GMAC的运算能力。其注册方法增强了处理518x518像素图像的效果,DINOv2技术有助于无监督视觉特征学习。此模型在图像嵌入应用中表现优异,并支持多种视觉分析与研究。用户可使用timm库简单调用和部署模型,适合多种机器学习场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号