Project Icon

AMD-Llama-135m

轻量级语言模型实现高效推理加速

AMD-Llama-135m是一个基于LLama2架构的135M参数语言模型,在AMD Instinct MI250加速器上训练。该模型与huggingface transformers兼容,并使用LLama2相同的分词器。模型可独立使用,也可作为LLama2和CodeLlama的推理加速辅助模型。经SlimPajama和Project Gutenberg数据集预训练,以及StarCoder Python代码数据集微调后,模型在多项NLP基准测试中表现优异。通过推理加速技术,吞吐量可提升至3.88倍。

Llama-3.2-1B - 提升2.4倍速度的语言模型微调框架
GithubHuggingfaceLlama 3.2Unsloth内存优化多语言支持开源项目模型模型微调
Meta发布的Llama-3.2-1B是一款支持8种语言的大规模语言模型。通过集成Unsloth工具,该项目实现了模型微调速度提升2.4倍、内存占用降低58%的性能优化。项目提供Google Colab环境支持,可快速进行模型训练,并支持将成果导出为GGUF、vLLM格式或部署至Hugging Face平台。
TinyLlama - 3万亿token训练的小型1.1B参数语言模型
AI预训练GithubTinyLlama开源项目模型评估语言模型
TinyLlama是一个使用3万亿token预训练的1.1B参数语言模型。它与Llama 2架构兼容,可集成到现有Llama项目中。TinyLlama体积小巧,适用于计算和内存受限的场景。该项目开源了预训练和微调代码,具有高效的训练和推理性能。TinyLlama可应用于推测解码、边缘计算和实时对话等领域。
Llama-3.2-1B-Instruct-GGUF - 多语言模型优化,提升对话和信息处理效率
GithubHuggingfaceLlama 3.2优化多语言对话开源项目模型生成模型行业基准
这个项目提供了经过优化的多语言大语言模型,提升了对话应用的效果和效率。Llama 3.2系列在1B和3B规格中进行了预训练及指令优化,能够处理信息提取和文本总结等多种任务。该模型在常用的行业基准测试中表现优于许多其他开源和闭源模型。SanctumAI通过量化增加了模型的操作效率,并提供多种量化选项以适应不同的硬件需求。在多语言对话的使用案例中,这些优化后的模型确保了良好的性能表现。
Llama-3.2-1B - Meta推出多语言大规模语言模型 支持多种商业和研究场景
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B是Meta开发的多语言大规模语言模型,支持8种语言。采用优化的Transformer架构,经9T token训练,具128K上下文长度。适用于对话、检索、摘要等任务,性能优于多数开源和闭源模型。支持商业和研究用途,可开发AI助手、写作工具等。提供原始和量化版本,适应不同计算资源需求。该模型在多语言处理和应用灵活性方面表现出色。
TinyLlama-1.1B-intermediate-step-955k-token-2T - 探讨紧凑型1.1B参数模型的高效预训练
GithubHuggingfaceTinyLlama参数开源项目模型计算预训练
TinyLlama项目目标是在3万亿标记上预训练一个具备1.1B参数的Llama模型。通过优化技术,该项目可在90天内使用16个A100-40G GPU完成训练。采用与Llama 2相同的架构和分词器,确保与其他开源项目的兼容性。TinyLlama的紧凑设计适合计算和内存受限的应用。该项目于2023年9月1日启动,计划在2023年12月1日前完成,并会逐步发布中间检查点。详细信息请查看TinyLlama GitHub页面。
Llama-3.1-Nemotron-70B-Instruct-bnb-4bit - 基于Unsloth技术的大语言模型高性能微调框架
GithubHuggingfaceLlama 3.1NVIDIA代码优化开源项目模型模型微调深度学习
Unsloth优化的Llama 3.1 Nemotron 70B指令模型,在保持模型性能的同时实现内存占用降低70%、训练速度提升2-5倍的优化效果。该框架支持Llama 3.2、Mistral、Phi-3.5等主流大语言模型的微调,提供适配Google Colab的入门级notebooks,支持GGUF、vLLM等多种导出格式。
Llama-3.2-1B-Instruct-Q8_0-GGUF - 高性能指令型大语言模型的GGUF格式版本
GGUF格式GithubHuggingfaceLlama 3.2Metallama.cpp大语言模型开源项目模型
Llama-3.2-1B-Instruct模型的GGUF格式版本专为高效推理而设计。该版本保留了原始模型的指令遵循能力,同时优化了推理速度和内存使用。通过llama.cpp,用户可在多种硬件上部署此模型,实现快速、资源友好的本地AI推理。这款1B参数的轻量级模型适用于个人电脑和边缘设备,为广泛应用场景提供了便利的AI解决方案。
llama2_xs_460M_experimental - 了解LLaMA与LLaMa 2的小型实验版本及其精简模型参数
GithubHuggingfaceLLaMa 2MMLUTokenization大模型开源开源项目模型
项目呈现Meta AI的LLaMA与LLaMa 2开源重现版本,并采用缩小的模型参数:llama1_s为1.8B,llama2_xs为460M。训练基于RedPajama数据集,使用GPT2Tokenizer分词,支持通过HuggingFace Transformers库直接加载以及文本生成。模型在MMLU任务中表现评估,其中llama2_xs_460M在0-shot和5-shot中分别得21.13和26.39的分数。
Llama-3.1-70B - Meta Llama 3.1 突破性多语言大模型 支持128K上下文
GithubHuggingfaceMeta人工智能多语言大语言模型开源项目模型自然语言处理
Llama 3.1是Meta推出的最新多语言大型语言模型系列,包含8B、70B和405B三种参数规模。模型采用优化的Transformer架构并经指令微调,在多语言对话场景中表现卓越。Llama 3.1具备128K上下文窗口,能够生成文本和代码,广泛适用于商业和研究领域。在众多行业基准测试中,Llama 3.1展现出优异性能,超越了大量主流开源和专有对话模型。
TinyLlama-1.1B-intermediate-step-715k-1.5T - 紧凑型AI模型的快速训练与高效优化
GPUGithubHuggingfaceLlama模型TinyLlama参数紧凑性开源项目模型预训练
TinyLlama项目在90天内利用16台A100-40G GPU完成了1.1B参数模型的预训练,涉及3万亿个令牌。该模型因其紧凑和模块化设计,适用于资源有限的多种应用场合。最新的中间检查点提供了715K步和1.49T令牌的参数,评估基准上表现均有提升。详情请访问TinyLlama GitHub页面。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号