Project Icon

pecos

用于大规模输出空间的高效机器学习框架

PECOS是一个专注于解决大规模输出空间问题的机器学习框架。它主要应用于极端多标签排序和大规模检索等任务,能在数百万候选项中快速识别和排序相关输出。该框架集成了X-Linear、XR-Transformer等算法和HNSW近似最近邻搜索技术,支持实时推理和海量数据处理。PECOS的设计灵活,可适应多种应用场景,为大规模机器学习任务提供了高效解决方案。

PECOS - Predictions for Enormous and Correlated Output Spaces

PyPi Latest Release License

PECOS is a versatile and modular machine learning (ML) framework for fast learning and inference on problems with large output spaces, such as extreme multi-label ranking (XMR) and large-scale retrieval. PECOS' design is intentionally agnostic to the specific nature of the inputs and outputs as it is envisioned to be a general-purpose framework for multiple distinct applications.

Given an input, PECOS identifies a small set (10-100) of relevant outputs from amongst an extremely large (~100MM) candidate set and ranks these outputs in terms of relevance.

Features

Extreme Multi-label Ranking and Classification

  • X-Linear (pecos.xmc.xlinear): recursive linear models learning to traverse an input from the root of a hierarchical label tree to a few leaf node clusters, and return top-k relevant labels within the clusters as predictions. See more details in the PECOS paper (Yu et al., 2020).

    • fast real-time inference in C++
    • can handle 100MM output space
  • XR-Transformer (pecos.xmc.xtransformer): Transformer based XMC framework that fine-tunes pre-trained transformers recursively on multi-resolution objectives. It can be used to generate top-k relevant labels for a given instance or simply as a fine-tuning engine for task aware embeddings. See technical details in XR-Transformer paper (Zhang et al., 2021).

    • easy to extend with many pre-trained Transformer models from huggingface transformers.
    • establishes the State-of-the-art on public XMC benchmarks.
  • ANN Search with HNSW (pecos.ann.hnsw): a PECOS Approximated Nearest Neighbor (ANN) search module that implements the Hierarchical Navigable Small World Graphs (HNSW) algorithm (Malkov et al., TPAMI 2018).

    • Supports both sparse and dense input features
    • SIMD optimization for both dense/sparse distance computation
    • Supports thread-safe graph construction in parallel on multi-core shared memory machines
    • Supports thread-safe Searchers to do inference in parallel, which reduces inference overhead

Requirements and Installation

  • Python (3.8, 3.9, 3.10, 3.11)
  • Pip (>=19.3)

See other dependencies in setup.py You should install PECOS in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.

Supporting Platforms

  • Ubuntu 20.04 and 22.04
  • Amazon Linux 2

Installation from Wheel

PECOS can be installed using pip as follows:

python3 -m pip install libpecos

Installation from Source

Prerequisite builder tools

  • For Ubuntu (20.04, 22.04):
sudo apt-get update && sudo apt-get install -y build-essential git python3 python3-distutils python3-venv
  • For Amazon Linux 2:
sudo yum -y install python3 python3-devel python3-distutils python3-venv && sudo yum -y groupinstall 'Development Tools'

One needs to install at least one BLAS library to compile PECOS, e.g. OpenBLAS:

  • For Ubuntu (20.04, 22.04):
sudo apt-get install -y libopenblas-dev
  • For Amazon Linux 2:
sudo amazon-linux-extras install epel -y
sudo yum install openblas-devel -y

Install and develop locally

git clone https://github.com/amzn/pecos
cd pecos
python3 -m pip install --editable ./

Quick Tour

To have a glimpse of how PECOS works, here is a quick tour of using PECOS API for the XMR problem.

Toy Example

The eXtreme Multi-label Ranking (XMR) problem is defined by two matrices

Some toy data matrices are available in the tst-data folder.

PECOS constructs a hierarchical label tree and learns linear models recursively (e.g., XR-Linear):

>>> from pecos.xmc.xlinear.model import XLinearModel
>>> from pecos.xmc import Indexer, LabelEmbeddingFactory

# Build hierarchical label tree and train a XR-Linear model
>>> label_feat = LabelEmbeddingFactory.create(Y, X)
>>> cluster_chain = Indexer.gen(label_feat)
>>> model = XLinearModel.train(X, Y, C=cluster_chain)
>>> model.save("./save-models")

After learning the model, we do prediction and evaluation

>>> from pecos.utils import smat_util
>>> Yt_pred = model.predict(Xt)
# print precision and recall at k=10
>>> print(smat_util.Metrics.generate(Yt, Yt_pred))

PECOS also offers optimized C++ implementation for fast real-time inference

>>> model = XLinearModel.load("./save-models", is_predict_only=True)
>>> for i in range(X_tst.shape[0]):
>>>   y_tst_pred = model.predict(X_tst[i], threads=1)

Citation

If you find PECOS useful, please consider citing the following paper:

Some papers from PECOS team:

License

Copyright (2021) Amazon.com, Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号