Project Icon

roberta-base-finetuned-autext23

RoBERTa模型微调版本实现高精度文本分类

roberta-base-finetuned-autext23是基于FacebookAI/roberta-base模型微调的文本分类模型。在评估集上,该模型达到了0.8974的准确率和0.8965的F1分数。模型采用Adam优化器,使用线性学习率调度器,经过5轮训练,批次大小为16。虽然性能优异,但模型的具体应用场景和数据集信息仍需补充。此模型适合需要高精度文本分类的任务,但使用时应注意其潜在限制。

my_awesome_model - DistilBERT微调的高效文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
my_awesome_model是一个基于distilbert-base-uncased微调的文本分类模型。该模型在未知数据集上训练,经过3轮迭代后,训练损失降至0.0632,验证损失为0.2355,训练准确率达92.95%。模型采用Adam优化器和多项式衰减学习率。虽然缺乏具体任务信息,但其性能表现显示了良好的文本分类潜力。
french-xml-model-a - XLM-RoBERTa微调的法语自然语言处理模型
GithubHuggingfacexlm-roberta-base开源项目微调模型文本分类机器学习模型自然语言处理
french-xml-model-a是基于FacebookAI/xlm-roberta-base微调的法语自然语言处理模型。在评估集上,该模型的准确率为93.22%,F1分数达0.8711。模型使用Adam优化器和线性学习率调度器,经3轮训练后性能最佳。这一模型可应用于各种法语自然语言处理任务,为相关研究和开发提供支持。
bert-base-uncased-ag-news - 基于BERT的文本序列分类模型
GithubHuggingfaceTextAttackag_news数据集bert-base-uncased序列分类开源项目模型精度
bert-base-uncased模型通过TextAttack和ag_news数据集进行微调,专为文本序列分类任务优化。经过5轮训练并采用交叉熵损失函数,该模型在第3轮时达到了0.951的高准确率。该模型设置批量大小为16,学习率为3e-05,最大序列长度为128,适用于高效准确的文本分类任务。了解更多信息请访问TextAttack的Github页面。
roberta-base-go_emotions - RoBERTa模型实现28种情感多标签分类
GithubHuggingfaceRoBERTago_emotions数据集text-classification多标签分类开源项目情感分析模型
该模型基于roberta-base,利用go_emotions数据集训练而成,可对文本进行28种情感的多标签分类。模型在测试集上实现0.474的准确率和0.450的F1分数。为提升性能,还提供ONNX版本。研究者可通过Hugging Face Transformers框架便捷应用此模型。值得注意的是,某些情感标签如'gratitude'表现优异,F1值超过0.9,而'relief'等标签表现欠佳,可能与训练数据分布不均有关。通过优化每个标签的阈值,模型的整体F1分数可提升至0.541,显示出进一步改进的潜力。
twitter-roberta-base-dec2021-tweet-topic-multi-all - 基于RoBERTa的多标签推文主题分类模型
GithubHuggingfaceTwitter RoBERTa多标签分类开源项目文本分类机器学习模型模型自然语言处理
这是一个基于twitter-roberta-base-dec2021的微调模型,专注于多标签推文主题分类。模型在tweet_topic_multi数据集上训练,在test_2021测试集上实现76.48%的微平均F1分数。它能有效识别社交媒体文本中的多个主题,为内容分析提供了可靠的自然语言处理工具。
roberta-base-finetuned-abbr - RoBERTa微调模型实现高精度缩写检测
GithubHuggingfacePLOD数据集RoBERTa命名实体识别开源项目微调模型模型自然语言处理
这是一个基于roberta-base在PLOD-filtered数据集上微调的模型,专门用于缩写检测。模型在评估中表现优异,精确率0.9645,召回率0.9583,F1值0.9614。采用掩码语言建模预训练,学习双向语言表示,适用于序列标注特别是缩写检测任务,为NLP应用提供有力支持。
distilbert-base-uncased-finetuned-sst-2-english - 基于SST-2数据集微调的DistilBERT情感分析模型达到91.3%分类准确率
DistilBERTGithubHuggingfaceSST-2开源项目文本分类机器学习模型模型偏见
这是一个在SST-2数据集上微调的DistilBERT情感分析模型,通过优化学习参数实现91.3%的分类准确率。模型支持英文文本的情感二分类,但在处理不同国家相关文本时存在潜在偏见。作为一个轻量级BERT变体,该模型在保持性能的同时显著降低了计算资源需求。
roberta-large-mnli - RoBERTa大型模型微调的零样本分类模型
GithubHuggingfaceRoBERTa开源项目文本分类机器学习模型自然语言处理语言模型
roberta-large-mnli是基于RoBERTa大型模型在MNLI语料库上微调的自然语言推理模型。该模型在零样本分类任务中表现优异,适用于句对分类和序列分类。它采用transformer架构,通过掩码语言建模进行预训练,在GLUE和XNLI基准测试中成绩卓越。然而,用户需注意模型可能存在偏见,不适合生成事实性内容或用于可能造成负面影响的场景。
sentiment-roberta-large-english - RoBERTa微调的通用英文情感分析模型
GithubHuggingfaceRoBERTaSiEBERT开源项目情感分析机器学习模型自然语言处理
sentiment-roberta-large-english是一个基于RoBERTa-large的微调模型,用于英文文本的二元情感分析。该模型在15个不同来源的数据集上进行了训练和评估,提高了对各种文本类型的泛化能力。在新数据上,其表现优于仅在单一类型文本上训练的模型,平均准确率为93.2%。模型可通过Hugging Face pipeline快速部署,也可作为进一步微调的基础。
roberta_toxicity_classifier - RoBERTa模型提供准确的有害评论分类功能
GithubHuggingfaceJigsawRoBERTa平行语料库开源项目有毒评论分类模型自然语言处理
本项目基于RoBERTa开发了一个有害评论分类模型。该模型在约200万条Jigsaw数据集样本上进行微调,测试集表现优异,AUC-ROC达0.98,F1分数为0.76。模型易于集成到Python项目中,可用于文本有害内容检测。项目提供使用说明和引用信息,便于研究人员和开发者在此领域深入探索。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号