Project Icon

roberta-base-finetuned-autext23

RoBERTa模型微调版本实现高精度文本分类

roberta-base-finetuned-autext23是基于FacebookAI/roberta-base模型微调的文本分类模型。在评估集上,该模型达到了0.8974的准确率和0.8965的F1分数。模型采用Adam优化器,使用线性学习率调度器,经过5轮训练,批次大小为16。虽然性能优异,但模型的具体应用场景和数据集信息仍需补充。此模型适合需要高精度文本分类的任务,但使用时应注意其潜在限制。

txlm-roberta-hindi-sentiment - 印地语情感分析模型:性能与应用场景
F1-scoreGithubHindiHuggingfaceT-XLM-RoBERTa-Hindi-Sentiment开源项目情感分类数据集模型
这款印地语情感分析模型基于公开数据集进行了微调,具备0.89的加权平均宏F1评分,适合在印地语媒体中提取情感信息。模型使用PyTorch模块进行微调,详细教程可在LondonStory的GitHub页面获取。
AraBert-Arabic-Sentiment-Analysis - 基于AraBERT的阿拉伯语情感分析模型实现80%分类准确率
AraBERTGithubHuggingface开源项目情感分析机器学习模型自然语言处理阿拉伯语情感分析
基于AraBERT预训练模型微调的阿拉伯语情感分析模型,在评估数据集上实现了80.03%的准确率和65.43%的宏F1分数。模型采用Adam优化器和线性学习率调度器,使用16的训练批次大小,经过2轮训练得到。基于Transformers框架开发,专注于阿拉伯语文本的情感分类任务。
chinese_roberta_L-2_H-128 - 使用多模态预训练优化中文自然语言处理
CLUECorpusSmallGithubHuggingfaceRoBERTa开源项目模型语言模型预训练
该项目包括24种中文RoBERTa模型,使用CLUECorpusSmall数据集进行训练,效果超过较大数据集。模型通过UER-py和TencentPretrain预训练,并支持多模态框架,参数超过十亿。模型可在HuggingFace和UER-py Modelzoo中获取。项目提供详细的训练过程和关键细节,便于结果复现,着重提升中文自然语言处理任务中的性能。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
Keras-TextClassification - 多样预训练模型支持的高效文本分类工具
GithubKeras-TextClassification嵌入式模型开源项目文本分类深度学习神经网络
为中文用户提供高效的文本分类解决方案,支持FastText、BERT、Albert等多种预训练模型,涵盖词、字、句子嵌入。详细介绍数据处理与模型训练流程,通过下载与调用数据,实现多标签分类和文本相似度计算,简化复杂的自然语言处理任务。
awesome-llms-fine-tuning - 大语言模型微调资源指南,包括教程、工具与最佳实践
BERTGPTGithubLLMRoBERTafine-tuning开源项目
本页面汇总了微调大语言模型(如GPT、BERT、RoBERTa)的全面资源,适用于特定任务和领域的需求。包含教程、论文、工具、框架和最佳实践,为研究人员、数据科学家和机器学习从业者提供宝贵的指导,提升模型表现,优化工作流程。
setfit - SetFit高效小样本学习框架,支持多语言文本分类
GithubHugging Face HubSetFit多语言支持少量标签数据开源项目无需提示
SetFit是一种高效且无需提示的小样本微调框架,利用Sentence Transformers实现高准确度的小样本学习。不需要手工制作提示或语言模型转换器,直接从文本示例生成丰富嵌入,大大提高训练速度。在仅有少量标记数据的情况下,SetFit的精度可与大型模型相媲美。例如,针对客户评论情感数据集,仅使用每类8个标记样本就能达到RoBERTa Large的全量训练精度。支持多语言文本分类,兼容Hugging Face Hub,训练和推理过程简单直观,是一个高效实用的选择。
pytextclassifier - PyTextClassifier:支持多种文本分类和聚类算法的高性能工具库
GithubPyTextClassifier开源工具包开源项目文本分类聚类算法自适应文本分析
PyTextClassifier是一款高性能的Python工具库,提供多种文本分类和聚类算法,支持二分类、多分类、多标签分类和Kmeans聚类。适用于情感分析和文本风险分类,设计简明易用,算法高效清晰。支持句子和文档级的文本任务,兼容英文和中文文本。包含FastText、TextCNN、TextRNN和BERT等深度学习模型,适合各类生产环境。
llm-finetuning - Modal和axolotl驱动的大语言模型高效微调框架
DeepSpeedGithubLLM微调LoRAModalaxolotl开源项目
这个开源项目整合了Modal和axolotl,为大语言模型微调提供了一个高效框架。它采用Deepspeed ZeRO、LoRA适配器和Flash Attention等先进技术,实现了高性能的模型训练。该框架支持云端部署,简化了资源管理流程,并可灵活适配不同模型和数据集。项目还提供了全面的配置说明和使用指南,方便开发者快速上手和定制化应用。
classifier-multi-label - 基于BERT的多标签文本分类算法实现
BERTGithubSeq2SeqTextCNNtf.nn.softmax_cross_entropy_with_logits多标签分类开源项目
本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号