Project Icon

colbertv2-camembert-L4-mmarcoFR

轻量级法语语义检索模型支持高效文本匹配

该法语语义检索模型采用轻量级设计,通过token级别编码实现文本匹配。模型在mMARCO-fr数据集评测中取得91.9%的召回率,参数量为54M。支持RAGatouille和colbert-ai框架集成,可用于构建法语搜索系统。

jina-colbert-v1-en - JinaBERT基础的长文档检索用ColBERT模型
GithubHuggingfaceJina-ColBERTMSMARCO对比结果开源项目检索性能模型长上下文
Jina-ColBERT是一个基于JinaBERT的ColBERT模型,它能处理8k的上下文长度,实现快速准确的检索。与ColBERTv2相比,使用了jina-bert-v2-base-en为主干,并在MSMARCO数据集上训练,表现优于部分基准模型,尤其在长上下文环境中表现更佳,适用于长文档检索场景。
msmarco-distilbert-base-v3 - 基于DistilBERT的文本向量化模型支持语义搜索与文本聚类
DistilBertGithubHuggingfacesentence-transformers向量映射开源项目模型自然语言处理语义搜索
msmarco-distilbert-base-v3是一个文本向量化模型,可将文本转换为计算机可理解的向量形式。基于sentence-transformers框架开发,主要应用于文本相似度计算、语义搜索和文本聚类等场景。该模型采用轻量级的DistilBERT架构,在保持性能的同时提高了处理效率。
JaColBERTv2.5 - 优化资源应用的日语信息检索模型
GithubHuggingfaceJaColBERTv2.5多语言模型开源项目数据集日本语检索器模型模型权重
该模型使用全新的训练方法,基于40%的数据成功创建了高效的日语信息检索系统。在多个数据集上表现优异,特别是改进的多向量检索方法,在资源受限的情况下提供卓越性能,优于包括BGE-M3在内的多语言模型,适合资源有限的应用场景。
bge-reranker-v2.5-gemma2-lightweight - 多语言轻量级模型提供高效排序和相似度评估
GithubHuggingfacebge-reranker-v2.5-gemma2-lightweight压缩比多语言开源项目性能表现模型轻量化
该多语言轻量级排序模型通过词元压缩和逐层优化,节省资源同时维持高性能。根据使用场景和资源限制,用户可灵活选择模型的压缩比例和输出层次,实现高效推理。项目已在BEIR和MIRACL上达到新SOTA性能,技术细节报告将于稍后发布。
mmarco-mMiniLMv2-L12-H384-v1 - 支持多语言的MMARCO跨编码器模型
Cross-EncoderGithubGoogle翻译Huggingface信息检索多语言开源项目模型模型训练
MMARCO-MiniLMv2-L12-H384-v1模型使用MMARCO数据集,以Google Translate翻译为14种语言,基于多语言MiniLMv2训练,主要用于信息检索。借助SentenceTransformers工具,用户可以对查询进行编码和排序,实现高效的信息检索。详细信息和训练代码可在SBERT.net及GitHub上查看,适用于多语言环境的信息检索。
msmarco-MiniLM-L-6-v3 - 基于BERT的句子编码模型实现文本语义向量化和相似度计算
GithubHuggingfacesentence-transformers嵌入模型开源项目模型深度学习自然语言处理语义向量
msmarco-MiniLM-L-6-v3是一个基于sentence-transformers的句子编码模型,将文本映射至384维向量空间。模型基于BERT架构,支持文本相似度计算和聚类分析,可通过sentence-transformers或HuggingFace Transformers框架调用。
distilbert-dot-tas_b-b256-msmarco - 基于平衡主题感知采样的高效密集检索方案
BERT_DotDistilBertGithubHuggingfaceMSMARCO开源项目文本检索模型知识蒸馏
本项目提供了一个基于DistilBERT的密集文本检索模型,采用双编码器结构和点积评分机制。该模型使用平衡主题感知采样(TAS-B)方法在MS MARCO数据集上训练,可用于候选集重排序或直接进行向量索引密集检索。模型在多个测试集上展现出优于BM25基线的检索性能。其特点包括高效训练(单GPU 48小时内完成)和保留原始DistilBERT的6层架构。这一方案为高效密集检索提供了新的解决思路。
simlm-msmarco-reranker - SimLM预训练的高性能密集段落检索模型
GithubHuggingfaceSimLM信息检索密集段落检索开源项目模型自然语言处理预训练模型
simlm-msmarco-reranker模型采用简单的瓶颈架构,通过自监督预训练压缩段落信息。在MS-MARCO等数据集上表现优异,超越ColBERTv2等多向量方法。该模型仅需无标签语料库即可训练,适用于缺乏标记数据的场景。研究人员可以使用此模型计算查询和段落的相关性得分,应用于信息检索和文本排序任务。
cross-encoder-mmarco-mMiniLMv2-L12-H384-v1 - 多语言文本重排序模型提升搜索结果准确性
Apache许可证GithubHuggingfacemMiniLMv2开源项目模型模型再排序跨编码器重新上传
mmarco-mMiniLMv2-L12-H384-v1是一个多语言文本重排序模型,基于MiniLM架构设计。它采用12层transformer结构和384维隐藏层,专注于提升文本搜索和排序的准确性。该模型支持多语言输入,适用于搜索结果优化和文档排序等任务,在保持高效性能的同时兼顾了跨语言应用。作为一个开源项目,它为研究人员和开发者提供了强大的文本相关性评分工具。
msmarco-distilbert-base-tas-b - 高效语义搜索句子嵌入模型
DistilBertGithubHuggingfacesentence-transformers嵌入模型开源项目模型自然语言处理语义搜索
msmarco-distilbert-base-tas-b是一个基于sentence-transformers的语义搜索模型。它将句子和段落映射到768维向量空间,专为查询-文档匹配优化。模型易于使用,可通过sentence-transformers库集成,在信息检索和语义相似性任务中表现出色。这个开源项目为开发者提供了一个高效的语义搜索解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号