Project Icon

wav2vec2-large-xlsr-53-romanian

基于XLSR-53的罗马尼亚语语音识别模型

该项目基于Facebook的wav2vec2-large-xlsr-53模型,通过Common Voice罗马尼亚语数据集进行微调,创建了一个专门用于罗马尼亚语的语音识别模型。在Common Voice罗马尼亚语测试集上,模型达到了24.84%的词错误率。适用于16kHz采样的罗马尼亚语音输入,无需额外语言模型即可使用。项目还提供了完整的使用说明和评估代码,便于研究者和开发者快速应用和验证。

wav2vec2-large-xlsr-53-italian - XLSR-53微调的开源意大利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目意大利语模型语音识别
这是一个基于Facebook的wav2vec2-large-xlsr-53模型,在Common Voice 6.1意大利语数据集上微调的语音识别模型。模型在测试集上达到9.41%的词错误率和2.29%的字符错误率。支持直接处理16kHz采样的语音输入,无需额外语言模型。项目提供了详细的使用说明和评估脚本,便于研究人员快速应用和测试。
wav2vec2-large-xlsr-53-portuguese - XLSR-53微调的葡萄牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型葡萄牙语语音识别
此语音识别模型通过在Common Voice 6.1数据集上微调XLSR-53模型,专门针对葡萄牙语优化。在测试中,模型表现优异,词错误率为11.31%,字符错误率为3.74%。模型设计用于处理16kHz采样率的语音输入,可独立使用或与语言模型结合以提升性能。项目还包含详细的使用说明和评估工具,方便研究者和开发者快速应用和测试。
wav2vec2-large-xlsr-53-spanish - 基于XLSR-53微调的西班牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型西班牙语语音识别
此西班牙语语音识别模型基于Facebook的wav2vec2-large-xlsr-53,在Common Voice数据集上微调。模型在测试集上达到8.82%词错误率和2.58%字符错误率,可直接处理16kHz采样的语音输入。项目提供使用示例和评估脚本,便于用户应用和评估。模型采用16kHz采样率,无需额外语言模型即可使用。项目还包含详细的使用说明和评估方法,有助于研究人员和开发者快速集成和测试。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
wav2vec2-large-xlsr-53-hungarian - 基于XLSR-53微调的匈牙利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53匈牙利语开源项目模型语音识别
该模型基于wav2vec2-large-xlsr-53在匈牙利语语音数据上微调而来,在Common Voice测试集上实现31.40%的词错误率和6.20%的字符错误率,性能优于同类模型。支持16kHz采样率的语音输入,无需额外语言模型即可使用。开发者可通过HuggingSound库或自定义脚本轻松集成该模型,实现匈牙利语语音识别功能。
wav2vec2-xls-r-1b-portuguese - XLS-R 1B微调的葡萄牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLS-R开源项目模型葡萄牙语语音识别
该项目基于XLS-R 1B模型微调,专注于葡萄牙语语音识别。模型在Common Voice 8.0等多个数据集上训练,测试集词错误率达8.7%。支持16kHz采样率语音输入,可通过HuggingSound库或自定义脚本使用。项目为葡萄牙语语音识别研究和应用提供了实用工具。
wav2vec2-xls-r-300m-cs-250 - 高性能捷克语语音识别模型 实现精准音频转文本
GithubHuggingfaceWav2Vec2开源项目捷克语模型模型训练深度学习语音识别
这是一个基于wav2vec2-xls-r-300m的捷克语语音识别模型,经过Common Voice 8.0等多个数据集的微调。模型在测试集上达到7.3%的词错误率和2.1%的字符错误率,性能优异。它支持16kHz采样率的语音输入,无需额外语言模型即可直接使用。项目提供了简洁的使用示例,并详细记录了训练过程和评估指标。
wav2vec2-large-xlsr-53-polish - 基于XLSR-53的波兰语语音识别模型
Common VoiceGithubHuggingfaceXLSR Wav2Vec2开源项目模型波兰语自然语言处理语音识别
此模型基于wav2vec2-large-xlsr-53,在波兰语Common Voice数据集上进行微调。在测试集上达到14.21%词错率和3.49%字错率。模型支持16kHz采样率的波兰语语音输入,可用于自动语音识别任务。用户可使用HuggingSound库或自定义脚本轻松实现推理。
wav2vec2-large-xlsr-53-russian - 基于XLSR-53的俄语语音识别微调模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53俄语开源项目模型语音识别
该项目是一个基于wav2vec2-large-xlsr-53的俄语语音识别微调模型。经Common Voice 6.1和CSS10数据集训练,适用于16kHz采样的语音输入。模型在Common Voice ru测试集上实现13.3%词错误率和2.88%字符错误率,加入语言模型后性能提升至9.57%和2.24%。支持通过HuggingSound库或自定义脚本使用,可应用于多种俄语语音识别场景。
wav2vec2-large-xlsr-53-arabic - XLSR-53模型在阿拉伯语语音识别中的应用与性能
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型自动语音识别阿拉伯语
该项目基于Facebook的wav2vec2-large-xlsr-53模型,通过阿拉伯语语音数据微调,开发了一个高性能的阿拉伯语语音识别模型。在Common Voice测试集上,模型实现了39.59%的词错误率和18.18%的字符错误率,表现优于同类模型。模型支持16kHz采样率的语音输入,可直接用于阿拉伯语语音转录,无需额外语言模型。项目详细介绍了使用方法和评估结果,为阿拉伯语语音识别研究提供了有价值的参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号