Project Icon

distilabel

AI数据合成与反馈框架

Distilabel是专为AI工程师设计的开源框架,用于数据合成和反馈。该框架提供高质量输出、数据所有权和高效性,适用于预测和生成模型。通过提升数据质量和整合多种LLM反馈,Distilabel提高AI输出质量。支持与最新研究的整合,确保灵活性、可扩展性和容错能力。欢迎加入开源社区,参与数据集和模型的构建,享受社区资源和支持。

LabelLLM - 开源数据标注平台 优化LLM开发流程
GithubLabelLLM人工智能多模态开源开源项目数据标注平台
LabelLLM是一个开源数据标注平台,旨在优化大型语言模型(LLM)开发中的数据标注流程。该平台提供灵活配置、多模态数据支持、全面任务管理和AI辅助标注功能。LabelLLM适合独立开发者和中小型研究团队使用,可显著提高数据标注效率,为LLM训练数据准备提供有力支持。
mtt-distillation - 合成数据集优化训练性能,广泛适用于多个领域
CIFAR-100CVPR 2022Dataset DistillationGithubImageNetSynthetic Data开源项目
通过匹配训练轨迹实现数据集蒸馏,减少模型训练所需的真实数据集数量并保持高性能。适用于ImageNet等大规模数据集,可生成低支撑的合成数据集和可拼接纹理。项目提供详细的实现步骤和代码,从下载仓库、生成专家轨迹到数据集蒸馏,帮助用户快速开始应用。还提供可视化工具和超参数设置指南,满足不同需求。此方法显著提高了模型训练效率,适合学术研究和工业应用。
DLTA-AI - AI赋能的数据标注、追踪和注释工具
DLTA-AIGithub分割模型开源项目数据标注机器学习目标跟踪
一款集成先进计算机视觉模型的工具,简化图像数据集创建,支持零样本分割和目标跟踪,提供多种模型选择与自定义导出格式,无缝结合Labelme,提升标注效率。
Label Studio - 开源数据标注工具支持多种数据类型
AI工具Label Studio人工智能开源平台数据标注机器学习
Label Studio是一款开源数据标注工具,支持图像、音频、文本、时间序列等多种数据类型。该平台提供灵活配置,可集成机器学习模型辅助标注,支持多用户协作。适用于准备训练数据、微调大语言模型和验证AI模型等场景,为数据科学和机器学习工作提供支持。
label-studio - 多功能开源数据标注工具,支持多种数据类型及模型集成
Docker安装GithubLabel Studio多用户标注开源数据标注开源项目机器学习模型
Label Studio 是开源的数据标注工具,支持音频、文本、图像、视频和时间序列等多种数据类型。用户通过直观的 UI 进行数据标注,并导出多种模型格式。它还提供多用户标注、项目管理、机器学习模型集成及定制化标签格式功能,适用于高精度机器学习模型的构建和优化。
syntheticAIdata - 为计算机视觉AI模型提供大规模合成训练数据的平台
AIAI工具合成数据数据生成模型训练计算机视觉
syntheticAIdata是一个为企业提供合成数据解决方案的平台,主要用于训练视觉AI模型。该平台能够生成大规模高质量数据,具有自动注释、成本效益高等特点。它采用无代码设计,操作简便。使用syntheticAIdata不仅可以降低数据获取成本,还能保护隐私、确保合规,加快AI产品开发进程。平台支持与主流云服务一键集成,便于用户快速部署和使用。syntheticAIdata通过模拟真实场景生成数据,有效规避了隐私和监管风险。对于企业来说,这是一个能够加速AI项目落地、提高模型性能的实用工具。
autodistill - 使用大型、较慢的基础模型来训练小型、较快的监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务
AutodistillGithubRoboflowinstance segmentationmachine learningobject detection开源项目
Autodistill利用大型基础模型训练小型快速监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务,并计划扩展至语言模型。可在本地硬件或云端运行,通过插件接口连接基础和目标模型插件,减少依赖和许可证冲突,确保高效便捷的模型训练与部署。
torchdistill - 模块化深度学习知识蒸馏框架
GithubPyYAMLtorchdistill开源项目模型训练深度学习知识蒸馏
torchdistill是一款模块化的深度学习知识蒸馏框架,通过编辑yaml文件即可设计实验,无需编写Python代码。支持提取模型中间表示,方便进行可重复的深度学习研究。通过ForwardHookManager,无需修改模型接口即可提取数据。支持从PyTorch Hub导入模块,并包含多种范例代码及预训练模型,适用于图像分类、目标检测、语义分割和文本分类等任务。
cleanlab - 开源工具自动检测和优化机器学习数据集
Githubcleanlab开源项目数据中心AI数据清理机器学习标签错误检测
cleanlab是一款开源的数据中心AI工具包,能够自动检测机器学习数据集中的标签错误、异常值和重复项等问题。该工具适用于图像、文本和表格等各类数据,并支持所有机器学习模型。除了发现数据问题,cleanlab还可以训练更稳健的模型,评估数据质量。基于可靠的理论基础,cleanlab运行高效,操作简便,是优化数据质量和提升模型性能的实用工具。
label-studio-ml-backend - Label Studio ML Backend 增强数据标注自动化的开源工具
DockerGithubLabel Studio开源项目机器学习后端模型训练预测
Label Studio ML Backend是一个开源SDK,用于将机器学习代码转换为Web服务器。它可与Label Studio实例集成,实现数据标注自动化。支持文本分类、命名实体识别和对象检测等多种模型。具备预标注、交互式标注和模型训练功能。开发者能够自定义ML后端,实现特定的推理逻辑。这个SDK简化了机器学习模型与Label Studio的整合过程,有效提升了数据标注效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号