Project Icon

notus-7b-v1

优化偏好响应的7B模型树立文本生成新标准

此模型通过直接偏好优化技术增强文本生成能力,树立新基准。其使用更具代表性的偏好数据集,提高了准确性,并在与Zephyr和Claude 2的比较中表现出色,成为AlpacaEval评估中最具竞争力的7B模型之一,是聊天应用程序中的理想助手。

NeuralLLaMa-3-8b-ORPO-v0.3 - 8B参数量文本生成模型在多任务中的优异表现
AI2推理挑战GithubHuggingfaceNeuralLLaMa-3-8b-ORPO-v0.3Open LLM排行榜准确率开源项目文本生成模型
NeuralLLaMa-3-8b-ORPO-v0.3是基于Meta Llama-3.1-8B-Instruct的一款文本生成模型,主要用于提升自然语言生成效率。此模型在AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA和Winogrande等数据集上表现良好,提供高达84.9%的正常化准确率。通过多数据集的支持与量化策略,NeuralLLaMa-3-8b-ORPO-v0.3在多种应用场景中展现出色的性能,适用于各类行业需求。
WizardVicuna2-13b-hf - 细化Llama 2模型以优化对话生成能力
GithubHuggingfaceLlama 2Meta参数规模开源项目文本生成模型训练数据
基于ehartford的wizard_vicuna_70k_unfiltered数据集,对Llama-2-13b-hf模型进行精细化训练三次,专注于对话应用的优化。该项目在开源基准测试中表现优异,并在人类评估中显示出与某些流行闭源模型相当的帮助性和安全性。为确保最佳性能,需按照指定格式使用INST和<<SYS>>标签。此模型由Meta研发,访问需遵循相关商业许可证。
ChimeraLlama-3-8B-v3 - 结合多项模型技术的高效文本生成能力
ChimeraLlama-3-8B-v3GithubHuggingfaceLLM排行榜准确率开源项目文本生成模型模型融合
ChimeraLlama-3-8B-v3采用LazyMergekit技术,结合NousResearch、mlabonne、cognitivecomputations等7个模型,为使用者提供高效的文本生成服务。在多个数据集上的表现优异,在IFEval(0-shot)达到了44.08的严格准确率,在MMLU-PRO(5-shot)测试中获得29.65的准确率。其参数配置运用了int8_mask和float16的数据类型,保证高效运行和资源使用优化。利用transformers库可便捷调用和使用该模型,体验其创新文本生成能力。
Llama-3-Instruct-8B-SPPO-Iter3 - 改进文本生成的创新模型及其在多任务中的性能评估
Apache-2.0GithubHuggingfaceLlama-3-Instruct-8B-SPPO-Iter3开源LLM排行榜开源项目文本生成模型自我游戏偏好优化
Llama-3-Instruct-8B-SPPO-Iter3模型采用自我对弈偏好优化技术进行第三次迭代微调,具备强大的文本生成能力。模型通过IFEval、BBH、MATH、GPQA、MuSR等多个数据集进行多任务性能评估,其中IFEval (0-Shot)的严格准确率为68.28。该模型基于meta-llama/Meta-Llama-3-8B-Instruct,使用openbmb/UltraFeedback数据集训练,拥有8B参数,专注于英文文本生成,为语言模型的优化提供了全新视角和实用的性能测试结果。
komt-mistral-7b-v1 - 韩语文本生成中的创新多任务指令调优模型
GithubHuggingfacekomet多任务指令大语言模型开源项目模型模型评估韩语性能
项目采用多任务指令调优方法,提升了韩语文本生成的准确性和有效性。通过监督数据集,生成适合大语言模型的训练数据并应用于komt-mistral-7b-v1,该模型是Mistral-7B-Instruct-v0.1的微调版本。评估结果显示,在韩语任务中的得分优于其他开源模型,尤其在文本生成和问答任务中表现出色,为韩语用户提供更智能的交互体验。
gemma-7b-it - 轻量级开源语言模型支持多种文本生成任务
GemmaGithubHuggingface人工智能开源项目机器学习模型自然语言处理语言模型
Gemma-7b-it是一款7B参数的指令调优语言模型,属于Google推出的轻量级开源模型系列。该模型支持问答、摘要和推理等多种文本生成任务,体积小巧易部署,适合在资源受限环境中使用。Gemma-7b-it采用先进训练技术,在多项基准测试中表现优异,同时注重道德和安全性。这款模型为NLP开发者和研究人员提供了一个功能强大且灵活的工具。
StableBeluga-13B - 基于Orca数据集微调的高效文本生成模型
GithubHuggingFace TransformersHuggingfaceStability AIStable Beluga 13B开源项目文本生成模型语言模型
Stable Beluga 13B是基于Llama2 13B的自动回归语言模型,采用Orca风格数据集进行微调,增强了对指令的跟随能力。用户可通过预定义格式与模型交互,生成高质量文本。模型使用混合精度BF16训练和AdamW优化器。在应用该技术前,需注意潜在输出风险并进行安全测试。
Delexa-7b - 多基准测试中展现出色表现的开源语言模型探索
AI推理Delexa-7bGithubHuggingface开源项目文本生成模型评估结果语言模型
Delexa-7b是开源的大型语言模型,在通用语言任务中表现优越。其在多项基准测试中,包括HellaSwag Challenge,获得了86.49%的准确率。该模型支持生成特定内容,并具备不生成非法内容的能力。在llm-judge平台上的初步评估中,Delexa-7b取得了8.143750的平均得分。其应用领域涵盖STEM推理和AI开发实验,需注意在使用时避免可能的有害生成内容。
mpt-7b - 高性能开源大语言模型
GithubHuggingfaceMPT-7B大语言模型开源开源项目模型深度学习自然语言处理
MPT-7B是一个开源大语言模型,在1万亿英文文本和代码上预训练。其改进的Transformer架构支持高效训练和推理,可处理超长输入。模型采用ALiBi技术处理长序列,无需位置嵌入。MPT-7B支持商业使用,为开发者提供了适用于多种下游任务微调的强大基础模型。
zephyr-7B-beta-AWQ - 基于Mistral模型优化的高性能7B开源对话模型,支持AWQ量化部署
AI模型GithubHuggingfaceZephyr 7B Beta大语言模型开源项目微调性能评估模型
Zephyr-7B-beta是基于Mistral-7B-v0.1模型的开源对话助手,采用DPO技术训练,在多项基准测试中表现优异。模型支持AWQ 4-bit量化,文件大小仅4.15GB,可通过多种框架高效部署。该项目使用MIT许可证,主要支持英语,适合研究和教育用途。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号