SimSIMD 📏
Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval.
These algorithms generally have linear complexity in time, constant complexity in space, and are data-parallel.
In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS and LAPACK, as well as higher-level numpy
and scipy
Python libraries.
Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs.
SimSIMD attempts to fill that gap.
1️⃣ SimSIMD functions are practically as fast as memcpy
.
2️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations.
Features
SimSIMD provides over 100 SIMD-optimized kernels for various distance and similarity measures, accelerating search in USearch and several DBMS products. Implemented distance functions include:
- Euclidean (L2) and Cosine (Angular) spatial distances for Vector Search.
- Dot-Products for real & complex vectors for DSP & Quantum computing.
- Hamming (~ Manhattan) and Jaccard (~ Tanimoto) bit-level distances.
- Kullback-Leibler and Jensen–Shannon divergences for probability distributions.
- Haversine and Vincenty's formulae for Geospatial Analysis.
- For Levenshtein, Needleman–Wunsch and other text metrics, check StringZilla.
Moreover, SimSIMD...
- handles
f64
,f32
, andf16
real & complex vectors. - handles
i8
integral andb8
binary vectors. - is a zero-dependency header-only C 99 library.
- has bindings for Python, Rust and JavaScript.
- has Arm backends for NEON and Scalable Vector Extensions (SVE).
- has x86 backends for Haswell, Skylake, Ice Lake, and Sapphire Rapids.
Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:
- Uses Horner's method for polynomial approximations, beating GCC 12 by 119x.
- Uses Arm SVE and x86 AVX-512's masked loads to eliminate tail
for
-loops. - Uses AVX-512 FP16 for half-precision operations, that few compilers vectorize.
- Substitutes LibC's
sqrt
calls with bit-hacks using Jan Kadlec's constant. - For Python avoids slow PyBind11, SWIG, and even
PyArg_ParseTuple
for speed. - For JavaScript uses typed arrays and NAPI for zero-copy calls.
Benchmarks
Against NumPy and SciPy
Given 1000 embeddings from OpenAI Ada API with 1536 dimensions, running on the Apple M2 Pro Arm CPU with NEON support, here's how SimSIMD performs against conventional methods:
Kind | f32 improvement | f16 improvement | i8 improvement | Conventional method | SimSIMD |
---|---|---|---|---|---|
Inner Product | 2 x | 9 x | 18 x | numpy.inner | inner |
Cosine Distance | 32 x | 79 x | 133 x | scipy.spatial.distance.cosine | cosine |
Euclidean Distance ² | 5 x | 26 x | 17 x | scipy.spatial.distance.sqeuclidean | sqeuclidean |
Jensen-Shannon Divergence | 31 x | 53 x | scipy.spatial.distance.jensenshannon | jensenshannon |
Against GCC Auto-Vectorization
On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12.
GCC handles single-precision float
but might not be the best choice for int8
and _Float16
arrays, which have been part of the C language since 2011.
Kind | GCC 12 f32 | GCC 12 f16 | SimSIMD f16 | f16 improvement |
---|---|---|---|---|
Inner Product | 3,810 K/s | 192 K/s | 5,990 K/s | 31 x |
Cosine Distance | 3,280 K/s | 336 K/s | 6,880 K/s | 20 x |
Euclidean Distance ² | 4,620 K/s | 147 K/s | 5,320 K/s | 36 x |
Jensen-Shannon Divergence | 1,180 K/s | 18 K/s | 2,140 K/s | 118 x |
Broader Benchmarking Results:
Using SimSIMD in Python
The package is intended to replace the usage of numpy.inner
, numpy.dot
, and scipy.spatial.distance
.
Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups.
NumPy and SciPy, processing i8
or f16
vectors, will use the same types for accumulators, while SimSIMD can combine i8
enumeration, i16
multiplication, and i32
accumulation to avoid overflows entirely.
The same applies to processing f16
values with f32
precision.
Installation
Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:
pip install simsimd
python -c "import simsimd; print(simsimd.get_capabilities())"
One-to-One Distance
import simsimd
import numpy as np
vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)
Supported functions include cosine
, inner
, sqeuclidean
, hamming
, and jaccard
.
Dot products are supported for both real and complex numbers:
vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128))
dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64))
dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`
Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups.
dist = simsimd.cosine(vec1, vec2, "i8")
dist = simsimd.cosine(vec1, vec2, "f16")
dist = simsimd.cosine(vec1, vec2, "f32")
dist = simsimd.cosine(vec1, vec2, "f64")
It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support.
For that, view data as continuous even-length np.float16
vectors and override type-resolution with complex32
string.
vec1 = np.random.randn(1536).astype(np.float16)
vec2 = np.random.randn(1536).astype(np.float16)
simd.dot(vec1, vec2, "complex32")
simd.vdot(vec1, vec2, "complex32")
One-to-Many Distances
Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:
vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor
batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist_rank1 = simsimd.cosine(vec1, batch2)
dist_rank2 = simsimd.cosine(batch1, batch2)
Many-to-Many Distances
All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:
batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)
Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.
Many-to-Many All-Pairs Distances
One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist
).
The resulting object will have a type DistancesTensor
, zero-copy compatible with NumPy and other libraries.
For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:
import numpy as np
from simsimd import cdist, DistancesTensor
matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine") # zero-copy
distances_array: np.ndarray = np.array(distances, copy=True) # now managed by NumPy
Multithreading
By default, computations use a single CPU core.
To optimize and utilize all CPU cores on Linux systems, add the threads=0
argument.
Alternatively, specify a custom number of threads:
distances = simsimd.cdist(matrix1, matrix2, metric="cosine", threads=0)
Using Python API with USearch
Want to use it in Python with USearch?
You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric
and pass it to USearch, similar to how it handles Numba's JIT-compiled code.
from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner
metric = CompiledMetric(
pointer=pointer_to_cosine("f16"),
kind=MetricKind.Cos,
signature=MetricSignature.ArrayArraySize,
)
index = Index(256, metric=metric)
Using SimSIMD in Rust
To install, add the following to your Cargo.toml
:
[dependencies]
simsimd = "..."
Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file.
The library provides several traits for different distance/similarity kinds - SpatialSimilarity
, BinarySimilarity
, and ProbabilitySimilarity
.
Spatial Similarity: Cosine and Euclidean Distances
use simsimd::SpatialSimilarity;
fn main() {
let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];
// Compute the cosine similarity between vector_a and vector_b
let cosine_similarity = f32::cosine(&vector_a, &vector_b)
.expect("Vectors must be of the same length");
println!("Cosine Similarity: {}", cosine_similarity);
// Compute the squared Euclidean distance between vector_a and vector_b
let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b)
.expect("Vectors must be of the same length");
println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}
Spatial similarity functions are available for f64
, f32
, f16
, and i8
types.
Dot-Products: Inner and Complex Inner Products
use simsimd::SpatialSimilarity;
use simsimd::ComplexProducts;
fn main() {
let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0];
// Compute the inner product between vector_a and vector_b
let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b)
.expect("Vectors must be of the same length");
println!("Inner Product: {}", inner_product);
// Compute the complex inner product between complex_vector_a and complex_vector_b
let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b)
.expect("Vectors must be of the same length");
let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a,