Project Icon

Behemoth-123B-v1-GGUF

多种量化策略优化文本生成模型效率

Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。

Meta-Llama-3-70B-Instruct-FP8 - FP8量化优化的Meta-Llama-3-70B指令模型实现高效部署
FP8GithubHuggingfaceLlama3vLLM大语言模型开源项目模型量化
Meta-Llama-3-70B-Instruct-FP8是一个经FP8量化优化的大型语言模型。通过AutoFP8技术,该模型将参数位数从16减至8,大幅降低存储和GPU内存需求。在OpenLLM基准测试中,其平均得分为79.16,与原始模型的79.51相近。这个英语助手式聊天模型适用于商业和研究领域,可通过vLLM后端实现高效部署。
Meta-Llama-3.1-8B-Instruct-GPTQ-INT4 - Meta-Llama-3.1-8B-Instruct模型的INT4量化版本
GPTQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的INT4量化版本,由社区开发。该版本将原FP16模型量化为INT4,支持多语言对话,在行业基准测试中表现优异。模型仅需约4GB显存即可加载,兼容多种推理框架。项目提供详细使用指南和量化复现方法,适用于资源受限环境下的高效部署。
Qwen2.5-0.5B-Instruct-GGUF - 支持29种语言的多功能语言处理模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型生成长文本量化
Qwen2.5系列大幅提升了编码、数学和指令跟随能力,支持长上下文的多语言处理,覆盖29种语言。该模型以GGUF格式提供因果语言模型,支持预训练和后训练,非常适合灵活的对话设计。其指令调整能力强,能有效应对多样化的系统提示,尤其在生成结构化输出(如JSON)方面表现突出。模型具备0.49B参数,24层结构,支持多种量化方法。
gemma-2-27b-it-gptq-4bit - Gemma-2-27b的量化模型,优化加载与推理效率
GPTQModelGemma-2GithubHuggingface开源项目模型模型推理自然历史博物馆量化
Gemma-2-27b经过GPTQ 4位量化优化,使其在资源受限环境中高效运行。采用GPTQModel量化,并通过vllm进行推理,适用于简洁高效的推理场景。关键特性包括128组大小、动态分组、对称量化、激活功能和顺序推理,提升模型体验。
OmniQuant - 简便高效的大型语言模型量化技术
GithubLLaMAOmniQuant大语言模型开源项目量化高效QAT
OmniQuant是一种高效的量化技术,支持多种大型语言模型(LLM)的权重和激活量化,包括LLaMa和OPT等。其实现了4位及更低精度的权重量化,并通过MLC-LLM优化在多种硬件设备上的推理性能和内存占用。此外,项目还支持Mixtral和Falcon模型的压缩应用,大幅降低内存需求,提高运行效率。
Llama-2-70B-Chat-AWQ - 基于AWQ的4位量化法优化多用户环境推理效率
AI助手GithubHuggingfaceLlama 2Meta开源项目性能优化模型量化
AWQ是一种高效的四位量化方法,能够提升Transformer的推理速度。结合vLLM,该方案在多用户服务器中实现高吞吐量的并发推理。AWQ的优势包括支持使用较小的GPU进行运行,简化部署要求并降低整体成本。例如,一个70B模型可在一台48GB的GPU上运行,而无需使用两台80GB设备。尽管目前整体吞吐量仍低于未量化模型,AWQ提供了更灵活的硬件选择。
Mistral-Small-22B-ArliAI-RPMax-v1.1-GGUF - AI模型量化方法提升硬件性能与资源效率
GithubHuggingfaceMistral-Small-22B-ArliAI-RPMax-v1.1基于ARM的优化开源项目性能模型模型下载量化
通过llama.cpp进行量化优化,AI模型适用于各种RAM配置和资源受限环境。多种量化选项可供选择,从高质量到低资源占用,确保最佳性能表现。适用于ARM以及其他特定硬件,通过选择I-quant和K-quant格式实现速度与质量的平衡,优化AI推理性能。
Midnight-Miqu-70B-v1.5-4bit - 为大规模语言模型提供高效4位量化部署方案
AI模型压缩AWQGithubHuggingfaceMidnight-Miqu-70Blmdeploy开源项目模型量化模型
Midnight-Miqu-70B-v1.5-4bit是一个经过lmdeploy工具优化的4位量化模型,旨在实现大规模语言模型的高效部署。该项目通过自动量化技术显著减小模型体积,同时保持性能稳定。这为在资源受限环境中部署强大语言模型提供了实用解决方案,可应用于多种自然语言处理任务。
ChatGLM-Efficient-Tuning - 微调ChatGLM-6B模型,支持多种训练和量化方法
ChatGLMGithubRLHF开源项目数据集机器学习高效微调
ChatGLM-Efficient-Tuning项目提供高效微调ChatGLM-6B模型的工具和方法,支持LoRA、P-Tuning V2等多种微调方式,适用于单GPU和多GPU训练。项目还提供Web UI和CLI操作,支持4-bit和8-bit量化训练。通过丰富的数据集和功能,如强化学习和模型评估,满足不同场景的微调需求。详情请参见项目Wiki。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号