Project Icon

DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored-GGUF

优化和下载支持多语言的DarkIdol-Llama文本生成模型

DarkIdol-Llama模型提供多种量化选项,涵盖多语言输出,适合角色扮演等多种应用场景。通过llama.cpp工具,用户可以选择符合需求的量化模型,以优化推理性能。提供详细的下载指南,帮助用户根据RAM和VRAM的配置选择合适的模型文件,特别推荐高质量的Q6_K_L版本。该模型可在LM Studio上运行,适用于不同硬件条件下的AI研究与开发。

Meta-Llama-3.1-70B-Instruct-GGUF - LLaMA 3.1模型量化版本集合及性能参数对比
GithubHuggingfaceLlama 3.1人工智能大语言模型开源项目机器学习模型模型量化
Meta-Llama-3.1-70B-Instruct模型量化版本集合采用llama.cpp的imatrix压缩方式,包含从Q8_0到IQ3_M共13种量化等级选择。模型文件大小范围为74.98GB至31.94GB,适配LM Studio运行环境。Q6_K、Q5_K系列及IQ4_XS等中等压缩比版本在性能与资源占用方面达到较好平衡。
Llama-3.2-3B-Instruct-GGUF - Llama 3.2多语言模型的高效量化部署方案
GithubHuggingfaceLlama 3.2多语言开源项目机器学习模型语言模型量化模型
Llama 3.2系列多语言模型的GGUF量化版本,针对对话、检索和摘要任务进行优化。通过多种量化方案实现4.66GB至9.38GB的灵活内存占用,适合在资源受限环境部署。该模型在主流行业基准测试中展现了良好性能。
Llama-3.1-Nemotron-70B-Instruct-HF-GGUF - Llama-3.1-Nemotron-70B多级量化模型适配不同硬件
GPUGithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF人工智能开源项目模型语言模型量化
该项目为Llama-3.1-Nemotron-70B-Instruct-HF模型提供多种量化版本,涵盖Q8_0至IQ1_M级别。针对不同硬件和性能需求,项目提供详细的文件选择指南,并包含模型提示格式及下载方法说明。用户可根据设备选择适合的版本,便于快速部署和使用。
Llama-3.2-3B-Instruct-GGUF - Llama-3.2-3B-Instruct模型的多种量化优化版本
GGUFGithubHuggingfaceLlama-3.2-3B大语言模型开源项目提示词格式模型量化
该项目提供Llama-3.2-3B-Instruct模型的11种量化版本,采用llama.cpp优化。量化精度从F16到Q4_K_S不等,文件大小介于6.43GB至1.93GB之间。Q6_K、Q5_K和Q4_K系列在性能与模型大小间取得平衡,适用多种场景。这些版本在保持模型质量的同时,有效减小文件体积并提升运行效率。
Llama-3.2-3B-Instruct-uncensored-i1-GGUF - 多种量化选项助力模型性能与效率优化
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored使用指南开源项目机器学习模型模型量化
项目提供多种量化选项,包括i1-IQ1_S到i1-Q6_K不同规格的GGUF文件,满足研究和开发中的多样化需求。用户可参考TheBloke的指南了解使用方法,实现实际应用中的性能和效率优化,同时保持模型输出质量与资源利用的平衡。
Llama-3.2-3B-Instruct-GGUF - Meta推出的新一代多语言AI对话模型 支持128K上下文
128K上下文GithubHuggingfaceLlama-3.2-3B-Instruct多语言对话模型开源项目模型社区模型
Llama-3.2-3B-Instruct是Meta发布的新一代多语言AI模型,针对对话、检索和摘要任务进行优化。官方支持8种语言,实际训练语言更多。模型具备128K长上下文能力,可处理复杂任务。社区贡献者bartowski基于llama.cpp提供GGUF量化版本,便于多设备部署。
Llama-3.2-1B-Instruct-GGUF - Meta开发的多语言对话AI模型
GithubHuggingfaceLlama-3.2人工智能多语言支持大语言模型开源许可开源项目模型
Llama-3.2-1B-Instruct是Meta开发的多语言对话AI模型,支持128K上下文长度和8种主要语言。该模型适用于代理检索、摘要等任务,由meta-llama创建并提供GGUF量化版本。作为社区模型,它针对多语言对话场景优化,可用于开发多种对话应用。使用时请注意相关责任和免责声明。
Llama-3.2-3B-Instruct-GGUF - 多语言模型优化文本生成与对话
GithubHuggingfaceLlama 3.2Meta元学习多语言文本生成开源项目模型许可协议
Llama 3.2作为多语言生成模型,通过优化变换器架构,在文本生成和对话中表现出色,适用于商业和研究。支持英语、德语、法语等多种语言,并可通过监督微调和人类反馈提升性能,特别在信息检索和总结任务中表现优异。使用需遵循许可协议。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
Llama-3.2-1B - 多语言大型语言模型引领自然语言处理新纪元
GithubHuggingfaceLlama 3.2Meta多语言开源项目模型生成模型社区许可
Llama 3.2是由Meta开发的多语言大型语言模型,通过优化的Transformer架构和多语言对话定制,尤其适用于问答、总结等任务。支持8种语言,可进行超越官方语言的定制训练,以适应多种自然语言生成任务。此项目展示了语言模型在商业和研究应用中日益增长的重要性,提供高效的多语言文本生成能力,助力移动AI写作助手等智能应用的发展。用户需遵循Llama 3.2社区许可规定,确保使用场景的安全性和合规性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号