Project Icon

JSL-MedLlama-3-8B-v1.0-GGUF

JSL-MedLlama-3-8B量化版本适应不同性能需求

项目提供多个适用于JSL-MedLlama-3-8B模型的量化方案,涵盖不同计算性能和存储需求。采用llama.cpp进行的量化涵盖从高到低的质量选项,满足不同设备资源条件。推荐使用Q5_K_M或Q4_K_M量化版本,以实现质量与性能的平衡,确保硬件资源的最佳利用和精准的医疗文本生成。

Llama-3.2-1B-Instruct-GGUF - 通过量化优化技术改进多语言文本生成
GithubHuggingfaceLLMLlama 3.2Meta开源项目模型社区许可证许可协议
本项目采用llama.cpp和imatrix量化技术,提高了多语言文本生成的能力。结合Bartowski的校准文件,以及IQ和Q系列多种量化方法,明显降低了模型的困惑度并提高了文本生成的准确性。这些优化在多种条件下保持高效,且降低了存储空间的需求,提供更灵活的AI应用优化和部署方案。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
Llama3-8B-1.58-100B-tokens-GGUF - Llama 3模型的GGUF格式优化版本
GithubHuggingfaceLlama3llama.cpp命令行界面开源项目推理模型模型转换
本项目提供Llama3-8B-1.58模型的GGUF格式版本,基于Meta-Llama-3-8B-Instruct模型转换而来。支持通过llama.cpp进行快速部署和推理,包括命令行界面和服务器模式。项目详细介绍了llama.cpp的安装、使用方法,以及从GitHub克隆和构建的步骤,方便开发者进行硬件优化和自定义配置。这一优化版本旨在提高模型的部署效率和推理性能。
codegemma-1.1-7b-it-GGUF - 文本生成的多样化量化模型选择
GithubHugging FaceHuggingfacetransformers开源项目文本生成模型模型下载量化
项目使用llama.cpp进行模型量化,提供多种模型版本以优化文本生成性能。用户可以依据硬件配置选择合适的模型版本,推荐选用Q6_K等高质量量化格式。多样化的模型版本在内存占用和性能表现之间提供灵活选择,适用于多种硬件平台。I-quant模型在较低量化级别上表现优异,适合需要高效运行的场景。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
Qwen2.5-Math-72B-Instruct-GGUF - Llamacpp在Qwen2.5-Math代码量化中的应用
ARM芯片GithubHugging FaceHuggingfaceQwen2.5-Math-72B-Instruct开源项目性能模型量化
项目应用llama.cpp对Qwen2.5-Math模型进行量化,提供多种量化格式以适应不同硬件配置。更新包括改进的分词器,涵盖高至极低质量的量化文件,适用于不同RAM和VRAM需求,并支持在ARM芯片上运行。使用K-quant和I-quant等量化方法,有助于优化模型性能与速度。下载和安装可通过huggingface-cli实现,灵活快捷。
Llama-3.2-1B-Instruct-GGUF - 高效量化的指令微调语言模型GGUF版本
GGUFGithubHuggingfaceLlama大语言模型开源项目文本生成模型量化
该项目提供Llama-3.2-1B-Instruct模型的GGUF格式量化版本,支持2至8位量化。GGUF是llama.cpp团队推出的新格式,取代了旧有的GGML。这一版本兼容多种支持GGUF的工具和库,如llama.cpp、LM Studio等,便于高效本地部署和推理。对于需要在资源受限环境中使用大型语言模型的开发者来说,此项目提供了实用的解决方案。
Meta-Llama-3-8B-Instruct-GPTQ-4bit - 4位量化Llama 3指令模型实现轻量级高性能自然语言处理
GithubHuggingfacetransformers开源项目机器学习模型模型卡片模型评估自然语言处理
Meta-Llama-3-8B-Instruct-GPTQ-4bit是基于Llama 3架构的4位量化大型语言模型。通过GPTQ量化技术,该模型显著减小了体积和内存占用,同时维持了良好性能。它特别适合在资源受限环境下运行,如移动设备和边缘计算设备。该模型可用于文本生成、问答和对话等多种自然语言处理任务。研究者和开发者可以利用Hugging Face Transformers库轻松部署该模型进行推理或进一步微调。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
Meta-Llama-3.1-70B-Instruct-GGUF - 多语言支持的70B参数GGUF量化指令模型
GGUF模型GithubHuggingfaceMeta-Llama开源项目文本生成本地运行模型量化
Meta-Llama-3.1-70B-Instruct模型的GGUF格式量化版本,提供2-bit至8-bit多种精度选择。这个70B参数模型支持英语、德语、法语等多种语言,适用于文本生成任务。GGUF格式优化了本地部署和推理效率,适合在本地环境运行大型语言模型。该模型兼容多种支持GGUF的推理工具,为用户提供灵活的应用选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号