Project Icon

JSL-MedLlama-3-8B-v1.0-GGUF

JSL-MedLlama-3-8B量化版本适应不同性能需求

项目提供多个适用于JSL-MedLlama-3-8B模型的量化方案,涵盖不同计算性能和存储需求。采用llama.cpp进行的量化涵盖从高到低的质量选项,满足不同设备资源条件。推荐使用Q5_K_M或Q4_K_M量化版本,以实现质量与性能的平衡,确保硬件资源的最佳利用和精准的医疗文本生成。

Llama-3.2-3B-Instruct-uncensored-GGUF - 高效文本生成的前沿模型格式
GPU加速GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored-GGUF开源项目文本生成模型模型格式量化
Llama-3.2-3B-Instruct-uncensored-GGUF采用了最新的GGUF格式,替代了不再支持的GGML,提升了大规模文本生成的性能。它兼容多种客户端与库,从llama.cpp到进阶GPU工具,包括Python库和用户友好的图形界面,如LM Studio和text-generation-webui,以及适用于故事创作的KoboldCpp。此更新提升了模型推理效率,具有广泛的兼容性,适用于多种系统平台,实现快速响应与多功能扩展。
SmolLM-1.7B-Instruct-v0.2-GGUF - 多位宽GGUF格式量化指令模型SmolLM-1.7B
GGUFGithubHuggingfaceSmolLM-1.7B开源项目文本生成模型模型格式量化
SmolLM-1.7B-Instruct-v0.2-GGUF是一个量化后的指令调优语言模型,支持2-bit至8-bit多种量化位宽。该模型采用GGUF格式,兼容llama.cpp等多种客户端和库,适用于本地部署的文本生成任务,为AI应用提供了灵活高效的选择。
Mistral-Nemo-Instruct-2407-GGUF - 高效模型量化与优化指南
GithubHuggingfaceLlamaEdgeMistral-Nemo-Instruct-2407开源项目模型模型量化语言支持高搜索量
该项目介绍了多语言支持的Mistral-Nemo-Instruct-2407模型,其量化版本是由Second State Inc.完成的,涵盖从2位到16位的不同精度和质量损失模型。特别推荐使用具有最小质量损失的Q5_K_M和Q5_K_S版本。此外,还提供了在LlamaEdge上运行的服务和命令行应用指南,以便在配置上下文大小和自定义提示模板时满足不同应用的需求。本项目适合于在资源有限的环境中追求性能优化的用户。
Llama3-OpenBioLLM-70B - 生物医学领域的开源大型语言模型
GithubHuggingfaceOpenBioLLM-70B临床医疗领域开源项目模型模型训练生物医学
由Saama AI Labs开发的OpenBioLLM-70B是专为生物医学设计的开源语言模型。其在高质量数据集上进行微调,以70亿参数的性能在生物医学基准测试中表现优异,甚至超过了更大规模的模型。该模型基于Meta-Llama-3-70B-Instruct等架构,通过多样化的医疗数据集优化生物医学应用,为全球研究人员和开发者在医疗和生命科学领域提供支持。
guanaco-65B-GGUF - 解析新型GGUF格式及其多平台兼容性
GPU加速GithubGuanaco 65BHuggingfaceTim Dettmers开源项目模型模型格式量化
此项目涵盖了2023年8月21日由llama.cpp团队推出的GGUF格式,作为已停用的GGML格式的替代方案。该项目提供了多种比特的量化文件,适用于CPU和GPU的推理需求。用户能够通过多种客户端和库,如llama.cpp和text-generation-webui,下载并高效使用这些模型,提供本地及网络接口支持。所支持的量化方法包括GGML_TYPE_Q4_K,提供质量与性能的平衡。
Meta-Llama-3-8B-Instruct - Meta推出Llama 3系列大型语言模型
GithubHuggingfaceLlama 3人工智能元模型大型语言模型开源项目模型自然语言生成
Llama 3是Meta开发的新一代大型语言模型系列,提供8B和70B两种参数规模。该模型针对对话场景进行优化,在行业基准测试中表现出色。Llama 3采用优化的Transformer架构,支持8k上下文长度,适用于助手式聊天和多种自然语言生成任务。模型开发过程注重提升实用性和安全性,可用于商业及研究目的。
TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
Open_Gpt4_8x7B_v0.2-GGUF - 提供多格式兼容量化模型,提升推理效率
GGUFGithubHuggingfaceOpen Gpt4 8X7B V0.2rombo dawg开源项目模型模型兼容性量化
此项目提供GGUF格式的多精度量化模型文件,旨在优化CPU和GPU的推理效率。作为GGML的替代,GGUF与多种第三方UI和库兼容,支持多平台AI模型的高效运行。项目包含2至8位量化模型以满足不同精度与内存要求,适合多种场景需求。通过详细的下载指导,用户能快速找到适合的模型文件,并利用llama.cpp、text-generation-webui等高性能运行时实现模型在不同硬件上的高效推理。
Llama-3.2-1B-Instruct-4bit - 精简高效的多语言文本生成工具
GithubHuggingfaceLlama 3.2Meta可接受使用政策开源项目机器学习模型许可协议
Llama-3.2-1B-Instruct-4bit是从Meta的Llama 3.2-1B-Instruct模型转换为MLX格式的产品,支持包括英语、德语、法语在内的多语言文本生成。引入4bit量化技术以提升运行效率与支持更大输入扩展。提供便捷的Python接口以实现文本生成,适合对话系统和内容创作等应用。遵循Meta的社区许可协议以确保合法使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号