Project Icon

Mistral-Small-Instruct-2409-GGUF

Mistral小型指令模型的多精度GGUF量化版本

Mistral-Small-Instruct模型的GGUF量化版本集合,文件大小从6GB到44GB不等。采用llama.cpp量化技术,提供从IQ2到F16的多种精度选择。包含详细的硬件兼容性说明和模型选择指南,支持多语言处理。

Mistral-7B-Instruct-v0.3-GGUF - Mistral-7B-Instruct模型的多种量化版本优化性能与文件大小
GGUFGithubHuggingfaceMistral-7B-Instruct-v0.3llama.cpp开源项目模型模型性能量化
该项目为Mistral-7B-Instruct-v0.3模型提供多种量化版本,采用llama.cpp的imatrix选项。量化类型从Q8_0到IQ1_S不等,文件大小范围为1.61GB至7.70GB。项目详细介绍了各版本特点,并提供下载指南和选择建议,方便用户根据硬件条件和性能需求选择最佳版本。
Mistral-7B-Instruct-v0.1-GGUF - Mistral 7B Instruct模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral 7B开源项目模型自然语言处理量化
本项目提供Mistral 7B Instruct v0.1模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,替代了GGML。项目包含2至8比特多种量化模型文件,支持CPU和GPU高效推理,适用于llama.cpp、text-generation-webui等多种客户端和库。此外还提供兼容性说明、文件说明和使用指南。
Mistral-7B-Instruct-v0.2-GGUF - Mistral 7B指令模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistralllama.cpp开源项目模型量化
本仓库提供Mistral AI的Mistral 7B Instruct v0.2模型的GGUF格式文件。GGUF是llama.cpp的新格式,替代了GGML。包含2至8比特多种量化版本,文件大小3GB至7.7GB,适合不同硬件。支持文本生成和对话任务,可用于CPU和GPU。仓库包含下载指南和使用示例,便于快速上手。
Mistral-Nemo-Instruct-2407-GGUF - Mistral Nemo多语言指令模型的量化版本
GGUFGithubHuggingfaceMistral-Nemo-Instruct-2407大语言模型开源项目机器学习模型量化模型
Mistral-Nemo-Instruct-2407模型的GGUF量化实现,包含从Q2到Q8多个量化等级,文件大小范围为4.9GB至13.1GB。模型原生支持英语、法语、德语等8种语言,基于Apache 2.0协议开源。项目提供了各量化版本的性能对比数据及使用文档,便于在性能和资源消耗间做出合适选择。
Mistral-7B-Instruct-v0.3-GGUF - 高性能量化版指令调优大语言模型
GGUF格式GithubHuggingfaceMistral-7B-Instruct开源项目文本生成本地部署模型语言模型
本项目提供Mistral-7B-Instruct-v0.3模型的GGUF格式量化版本。GGUF是llama.cpp团队开发的新格式,兼容多种客户端和库。模型支持2-8位量化,可在不同平台上实现GPU加速,适合文本生成和对话应用。这为在本地设备部署高性能大语言模型提供了便捷解决方案。
Mistral-Nemo-Instruct-2407-GGUF - 多语言高性能指令型语言模型的GGUF量化方案
GithubHuggingfaceMistral-Nemo-Instruct-2407大型语言模型开源项目提示模板模型模型量化硬件需求
Mistral-Nemo-Instruct-2407-GGUF是Mistral AI和NVIDIA联合开发的指令微调大语言模型的量化版本。该模型支持多语言处理,性能优于同等规模模型。项目提供多种GGUF量化方案,文件大小从4.79GB到24.50GB不等,适用于不同硬件配置,方便在各类设备上部署。
Mistral-7B-Instruct-v0.3-GGUF - 高性能量化版指令微调大语言模型
GithubHuggingfaceMistral-7B-Instruct-v0.3大型语言模型开源项目提示模板模型硬件要求量化
Mistral-7B-Instruct-v0.3 GGUF是一系列针对不同硬件条件优化的量化模型。支持32k上下文长度、扩展词表和函数调用,适用于对话等交互任务。模型大小从2.72GB到14.5GB不等,提供多种精度选择,平衡性能和资源消耗。GGUF格式便于在各类设备上高效部署和使用。
Ministral-8B-Instruct-2410-GGUF - 多语言开源大模型的精简量化版本
GithubHuggingfaceMistralllama.cpp大型语言模型开源项目推理模型量化
本项目提供Mistral AI的Ministral-8B-Instruct-2410模型的多种量化版本。使用llama.cpp进行量化,包含从16GB的F16全精度版本到4.45GB的IQ4_XS版本,适合不同硬件和性能需求。量化模型采用imatrix选项和特定数据集生成,可在LM Studio运行。项目详细介绍了各版本的文件大小、特点及模型提示格式,方便用户选择合适的版本。
Mistral-Nemo-Instruct-2407-GGUF - Mistral指令模型的GGUF格式文件 支持多位宽量化
GGUFGithubHuggingfaceMistral-Nemo-Instruct-2407开源项目文本生成模型语言模型量化
该项目为Mistral-Nemo-Instruct-2407模型提供GGUF格式文件。GGUF是llama.cpp团队开发的新格式,取代了旧有的GGML。模型支持2-bit至8-bit多种量化级别,适用于文本生成。兼容多种支持GGUF的工具,如llama.cpp和LM Studio,可实现本地运行和GPU加速。这些GGUF文件使得Mistral模型能在各种平台上高效运行,为开发者和研究者提供了灵活的应用选择。
Mistral-Large-Instruct-2407-GGUF - Mistral-Large-Instruct-2407模型的多语言量化方法与文件选择建议
GPU性能优化GithubHuggingfaceMistral-Large-Instruct-2407开源项目文本生成模型量化量化格式
Mistral-Large-Instruct-2407项目提供了多种语言支持的模型量化版本。通过llama.cpp工具,用户可以根据不同的RAM和VRAM需求进行量化。文章详细介绍每种量化文件的特性与性能建议,帮助用户根据硬件条件选取适合的文件,实现模型的快速或高质量运行。推荐关注K-quant与I-quant格式文件以在性能与速度间取得平衡。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号