Project Icon

Nemotron-Mini-4B-Instruct-GGUF

量化模型应用指南与选择推荐

项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。

InferLLM - 轻量化语言模型推理框架,兼容多种模型格式和设备
GithubInferLLMllama.cpp多模型兼容开源项目模型推理高效率
InferLLM 是一个高效简洁的语言模型推理框架,源于 llama.cpp 项目。主要特点包括结构简单、高性能、易于上手,并支持多模型格式。目前兼容 CPU 和 GPU,可优化 Arm、x86、CUDA 和 riscv-vector,并支持移动设备部署。InferLLM 引入了专有 KVstorage 类型以简化缓存和管理,适合多种应用场景。最新支持的模型包括 LLama-2-7B、ChatGLM、Alpaca 等。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - 提升文本生成技术的精度和合规性
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2准确性开源项目未过滤模型量化
基于Llama-3.1-8B-Instruct的项目,旨在提高文本生成的精确性和合规性,并遵循Meta的Llama 3.1社区协议。量化的Lexi模型在多种数据集上评估,IFEval数据集精度达77.92%。用户可自定义系统提示以优化效果,建议在服务部署前添加对齐层以确保合规。使用生成内容时需谨慎负责。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQATGithubPyTorch大语言模型开源项目模型压缩量化训练
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
LoftQ - 大型语言模型低资源量化微调新方法
GithubLoRALoftQ大语言模型开源项目微调量化
LoftQ是一种为大型语言模型设计的量化微调方法。它通过寻找最佳的量化LoRA初始化,实现有限GPU资源下的高效模型微调。LoftQ支持LLAMA、Falcon、Mistral等主流模型,提供相关工具和示例代码。在WikiText-2和GSM8K等任务上,LoftQ展现出优秀性能,为低资源环境中的LLM应用开发创造了新可能。
rwkv.cpp - 多精度量化推理和CPU优化的大语言模型
GithubPythonRWKVcuBLASggmlhipBLAS开源项目
该项目将RWKV-LM移植到ggerganov的ggml,支持FP32、FP16及量化的INT4、INT5和INT8推理,主要针对CPU使用,同时兼容cuBLAS。项目提供C库和Python封装。RWKV是一种不同于Transformer的大语言模型架构,只需前一步状态计算logits,适合长上下文使用。支持RWKV v5和v6模型以及LoRA检查点加载,适用于高质量和高性能需求的场景。
Phind-CodeLlama-34B-v2-GGUF - 利用GGUF格式提升模型性能,兼容多平台GPU加速
CodeLlamaGPU加速GithubHuggingface开源项目文本生成格式转换模型模型量化
Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。
Qwen2.5-0.5B-Instruct-GGUF - 支持29种语言的多功能语言处理模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型生成长文本量化
Qwen2.5系列大幅提升了编码、数学和指令跟随能力,支持长上下文的多语言处理,覆盖29种语言。该模型以GGUF格式提供因果语言模型,支持预训练和后训练,非常适合灵活的对话设计。其指令调整能力强,能有效应对多样化的系统提示,尤其在生成结构化输出(如JSON)方面表现突出。模型具备0.49B参数,24层结构,支持多种量化方法。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
ChatGLM-Efficient-Tuning - 微调ChatGLM-6B模型,支持多种训练和量化方法
ChatGLMGithubRLHF开源项目数据集机器学习高效微调
ChatGLM-Efficient-Tuning项目提供高效微调ChatGLM-6B模型的工具和方法,支持LoRA、P-Tuning V2等多种微调方式,适用于单GPU和多GPU训练。项目还提供Web UI和CLI操作,支持4-bit和8-bit量化训练。通过丰富的数据集和功能,如强化学习和模型评估,满足不同场景的微调需求。详情请参见项目Wiki。
Llama-3.2-3B-Instruct-uncensored-GGUF - 高效文本生成的前沿模型格式
GPU加速GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored-GGUF开源项目文本生成模型模型格式量化
Llama-3.2-3B-Instruct-uncensored-GGUF采用了最新的GGUF格式,替代了不再支持的GGML,提升了大规模文本生成的性能。它兼容多种客户端与库,从llama.cpp到进阶GPU工具,包括Python库和用户友好的图形界面,如LM Studio和text-generation-webui,以及适用于故事创作的KoboldCpp。此更新提升了模型推理效率,具有广泛的兼容性,适用于多种系统平台,实现快速响应与多功能扩展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号