Project Icon

Replete-LLM-V2.5-Qwen-14b-GGUF

Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述

该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。

Llama-3-8B-Instruct-DPO-v0.1-GGUF - Llama-3指令型语言模型的GGUF量化版本
GGUFGithubHuggingfaceLlama-3人工智能开源项目文本生成模型量化模型
该项目提供Llama-3-8B-Instruct-DPO-v0.1模型的GGUF格式量化版本,支持2至8位多种位宽。模型采用ChatML提示模板,兼容多种GGUF客户端和库,如llama.cpp和LM Studio。作为文本生成模型,它为本地部署提供了高性能和灵活的选择。
Mistral-Nemo-Instruct-2407-GGUF - 高效模型量化与优化指南
GithubHuggingfaceLlamaEdgeMistral-Nemo-Instruct-2407开源项目模型模型量化语言支持高搜索量
该项目介绍了多语言支持的Mistral-Nemo-Instruct-2407模型,其量化版本是由Second State Inc.完成的,涵盖从2位到16位的不同精度和质量损失模型。特别推荐使用具有最小质量损失的Q5_K_M和Q5_K_S版本。此外,还提供了在LlamaEdge上运行的服务和命令行应用指南,以便在配置上下文大小和自定义提示模板时满足不同应用的需求。本项目适合于在资源有限的环境中追求性能优化的用户。
Hermes-3-Llama-3.1-70B-Uncensored-GGUF - 静态与多变量量化技术在Hermes-3-Llama模型中的应用
GithubHermes-3-Llama-3.1-70B-UncensoredHugging FaceHuggingfacetransformers工作站开源项目模型量化
Hermes-3-Llama-3.1-70B-Uncensored项目提供多种量化文件类型,包括更优的IQ-quants,适用于不同的性能需求。用户可参考TheBloke的材料了解GGUF文件的使用方法。不同的量化文件按大小排序,推荐使用性能较佳的Q4_K_S文件。项目特别感谢nethype GmbH提供的技术支持。
Llama-3-Groq-8B-Tool-Use-GGUF - 高性能文本生成模型的GGUF格式优化版
GGUFGithubHuggingfaceLlama-3-Groq-8B-Tool-Use人工智能开源项目文本生成模型量化模型
Llama-3-Groq-8B-Tool-Use模型的GGUF格式版本由MaziyarPanahi量化优化。GGUF作为llama.cpp团队推出的新格式,取代了旧有的GGML。该模型兼容多种客户端和库,如llama.cpp、LM Studio等,支持GPU加速和跨平台运行。GGUF格式优化后的模型能够提供高效的本地文本生成功能,适用于多种应用场景。
Qwen2.5-72B-Instruct-GPTQ-Int8 - 支持多语种和长文本处理的先进AI模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目指令调优模型长文本处理
Qwen2.5的最新版通过改进知识、编码和数学能力,支持包括中文在内的29种语言,能够处理长文本并生成超过8K字符的文本。此72B参数的8位量化模型在指令遵循和结构化输出生成上有显著提升,有助于Chatbot角色扮演与多样化提示的实现。
llama-30b-supercot-GGUF - Llama 30B Supercot GGUF:多种量化格式与GPU加速
GPU加速GithubHuggingfaceLlama 30B Supercot开源项目新格式模型模型文件量化
GGUF格式的Llama 30B Supercot模型支持GPU加速,具备多个量化选项。由ausboss创建,提供多种格式适应不同需求,推荐Q4_K_M格式以实现性能与质量的平衡。GGUF是GGML的替代格式,兼容多种用户界面和库,如llama.cpp、text-generation-webui,适合于机器学习和AI领域应用。
Qwen2.5-0.5B-Instruct-q4f16_1-MLC - 支持跨平台部署的轻量级对话系统
GithubHuggingfaceMLC-LLMQwen2.5REST服务开源项目模型模型量化聊天机器人
Qwen2.5-0.5B-Instruct-q4f16_1-MLC是Qwen2.5-0.5B-Instruct模型的MLC格式版本,专为MLC-LLM和WebLLM项目设计。这个轻量级指令对话模型支持命令行、REST服务器和Python API多种部署方式。通过q4f16_1量化技术,模型在保持性能的同时显著减小体积,适合资源受限环境。它可轻松集成到各类应用中,高效执行自然语言处理任务。
Meta-Llama-3-8B-Instruct-GPTQ-4bit - 4位量化Llama 3指令模型实现轻量级高性能自然语言处理
GithubHuggingfacetransformers开源项目机器学习模型模型卡片模型评估自然语言处理
Meta-Llama-3-8B-Instruct-GPTQ-4bit是基于Llama 3架构的4位量化大型语言模型。通过GPTQ量化技术,该模型显著减小了体积和内存占用,同时维持了良好性能。它特别适合在资源受限环境下运行,如移动设备和边缘计算设备。该模型可用于文本生成、问答和对话等多种自然语言处理任务。研究者和开发者可以利用Hugging Face Transformers库轻松部署该模型进行推理或进一步微调。
Upstage-Llama-2-70B-instruct-v2-AWQ - 先进的低比特量化技术优化文本生成模型
GithubHuggingfaceLlama 2 70B Instruct v2Upstage开源项目文本生成模型量化
Upstage通过AWQ模型实现高效的4比特量化,相较于GPTQ提供更快的推理速度。AWQ支持高吞吐量的多用户服务器环境,可在更小的GPU上运行,从而降低部署成本。此外,模型在多项基准测试中表现卓越,能够在单个48GB GPU上运行70B模型,便于快速部署。了解更多关于该模型的性能和应用场景。
bagel-8b-v1.0-GGUF - 多样化量化文件助力文本生成
GithubHuggingfaceRAM需求bagel-8b-v1.0开源项目文件下载模型模型量化高质量
bagel-8b-v1.0-GGUF项目通过llama.cpp量化技术,提供多种优化的模型文件,涵盖从高品质到低内存的多层次需求。用户可根据硬件条件选择合适的K-quants或I-quants版本,详细对比信息参见Artefact2的分析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号