Project Icon

Replete-LLM-V2.5-Qwen-14b-GGUF

Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述

该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。

qwen - Qwen模型在Habana Gaudi处理器上的配置与训练概述
Gaudi处理器GithubHuggingfaceOptimum HabanaQwen模型Transformer开源项目模型混合精度
通过Optimum Habana接口,在Habana Gaudi处理器上实现Qwen模型的高效加载和训练。该接口简化了单个和多个HPU设置下的训练流程,并支持自定义AdamW优化器、梯度剪辑和PyTorch混合精度功能。用户可以通过配置GaudiConfig文件以及特定的HPU训练参数,利用语言模型示例代码,以充分发挥HPUs的性能。更多信息和详细用例请参考Hugging Face的文档及GitHub资源。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
Llama-3-8B-Instruct-32k-v0.1-GGUF - Llama-3 8B指令模型GGUF版本支持多位量化及广泛应用
GGUFGithubHuggingfaceLlama-3开源AI开源项目模型自然语言处理量化模型
本项目提供Llama-3-8B-Instruct-32k-v0.1模型的GGUF格式文件。GGUF是llama.cpp团队开发的新格式,取代了旧有的GGML。该模型支持2至8位量化,主要用于文本生成。它与多款主流本地运行框架和界面工具兼容,如llama.cpp、LM Studio和text-generation-webui等。这些工具普遍支持GPU加速,使模型能够适应多样化的应用需求。
mlx-llm - 在Apple Silicon上实时运行的高级语言模型应用与工具
Apple SiliconGithubHuggingFaceLarge Language ModelsQuantizationmlx-llm开源项目
mlx-llm支持用户在Apple Silicon设备上实时运行高级语言模型(LLMs)的应用和工具。该项目支持多种预训练模型,并提供简便的安装方法。用户可以加载新版预训练权重、进行模型量化及嵌入提取。此外,mlx-llm还覆盖了多种应用场景,包括命令行聊天、LoRA或QLoRA微调及检索增强生成(RAG)等。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - 提升文本生成技术的精度和合规性
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2准确性开源项目未过滤模型量化
基于Llama-3.1-8B-Instruct的项目,旨在提高文本生成的精确性和合规性,并遵循Meta的Llama 3.1社区协议。量化的Lexi模型在多种数据集上评估,IFEval数据集精度达77.92%。用户可自定义系统提示以优化效果,建议在服务部署前添加对齐层以确保合规。使用生成内容时需谨慎负责。
guanaco-65B-GGUF - 解析新型GGUF格式及其多平台兼容性
GPU加速GithubGuanaco 65BHuggingfaceTim Dettmers开源项目模型模型格式量化
此项目涵盖了2023年8月21日由llama.cpp团队推出的GGUF格式,作为已停用的GGML格式的替代方案。该项目提供了多种比特的量化文件,适用于CPU和GPU的推理需求。用户能够通过多种客户端和库,如llama.cpp和text-generation-webui,下载并高效使用这些模型,提供本地及网络接口支持。所支持的量化方法包括GGML_TYPE_Q4_K,提供质量与性能的平衡。
TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
Meta-Llama-3.1-70B-Instruct-GGUF - 多语言支持的70B参数GGUF量化指令模型
GGUF模型GithubHuggingfaceMeta-Llama开源项目文本生成本地运行模型量化
Meta-Llama-3.1-70B-Instruct模型的GGUF格式量化版本,提供2-bit至8-bit多种精度选择。这个70B参数模型支持英语、德语、法语等多种语言,适用于文本生成任务。GGUF格式优化了本地部署和推理效率,适合在本地环境运行大型语言模型。该模型兼容多种支持GGUF的推理工具,为用户提供灵活的应用选择。
llama-3-8b - 优化Llama 3 效率提升 内存占用减少
AI绘图GithubHuggingfaceLlama3内存使用开源项目性能优化模型模型微调
llama-3-8b项目通过Unsloth技术在Colab平台上提供免费调优服务,支持包括Llama-3 8b和Gemma 7b在内的多种模型。项目以简单操作为特征,使模型在提升两倍以上速度和减少70%内存使用的同时,满足模型高效更新需求,适用于开发者和研究人员。所有笔记本友好初学者,并支持数据集和框架的多样性导出与上传。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号