Project Icon

Yi-1.5-34B-Chat-GGUF

多种量化选项助力Yi-1.5-34B-Chat模型优化

本文介绍了Yi-1.5-34B-Chat模型的多种量化方法,通过llama.cpp的imatrix选项,为不同需求提供多种文件版本和质量等级。用户可依据硬件条件选择合适的量化文件,满足RAM与VRAM的需求。文中附有使用指导和性能比较图表链接,帮助用户在性能和文件大小间权衡。此外,还说明了I-quant和K-quant的区别及应用场景,便于用户在不同硬件环境中高效应用该文本生成模型。

Rombos-LLM-V2.6-Qwen-14b-GGUF - 基于llama.cpp的Qwen-14B量化模型集合
GGUFGithubHuggingfaceRombos-LLMllama.cpp开源项目模型模型压缩量化
llama.cpp量化的Qwen-14B开源项目,通过imatrix方案优化生成多种GGUF格式模型文件。模型尺寸从2GB到29GB不等,覆盖Q2至F16多种量化精度,并针对不同硬件架构进行优化。项目提供完整的模型选择指南,方便本地部署时根据实际硬件环境选择合适版本。
Yi-Coder-9B-Chat-GGUF - 多位宽量化的Yi-Coder-9B-Chat GGUF代码生成模型
GGUF格式GPU加速GithubHuggingfaceYi-Coder-9B-Chat开源项目本地运行模型模型文件
Yi-Coder-9B-Chat-GGUF是01-ai原始代码生成模型的GGUF格式版本,提供2至8位量化选项。该模型兼容多种GGUF支持工具,如llama.cpp和LM Studio,便于本地部署。不同位宽的量化版本可满足各种性能和资源需求,适用于多样化的代码生成场景。
Phi-3.1-mini-4k-instruct-GGUF - Phi-3.1-mini-4k-instruct量化技术在文本生成中的应用
GithubHuggingfaceNLPPhi-3.1-mini-4k-instruct开源项目数据集文件下载模型量化
该项目通过llama.cpp进行模型量化,提供多种量化文件选项,涵盖从高质量到适合低内存设备的多种场景。项目详细介绍了如何选择量化文件,并提供了在不同硬件环境下的最佳实践,对于有技术需求的用户,项目提供了功能特性对比分析,帮助理解量化与优化策略。
Qwen2.5-7B-Instruct-GGUF - Qwen2.5-7B-Instruct的多样化量化方案增强模型适应性
ARM芯片GithubHuggingfaceQwen2.5-7B-Instruct开源项目性能优化模型训练数据集量化
项目采用llama.cpp的最新量化方案对Qwen2.5-7B-Instruct模型进行优化,提供灵活的量化格式以匹配各类硬件环境。更新的上下文长度管理与先进的分词器,无论选择传统的Q-K量化还是新兴的I-quant,各种档次的文件都能帮助设备实现性能与速度的平衡。尤其是对ARM架构的专门优化,即便在低RAM环境下,用户也能凭借有限的资源获得可行的使用体验。
Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
Yi-1.5-6B-Chat - 提升代码、数学、推理能力的开源AI模型
GithubHuggingfaceYi-1.5基准测试开源项目数学推理模型语料库语言理解
Yi-1.5在编码、数学、推理和指令执行方面表现卓越,其通过训练5000亿高质量语料和300万多样化样本的微调实现了更强的表现。同时,Yi-1.5-6B-Chat等多个模型版本提供了不同的上下文长度以适应各种应用场景需求。这些模型在基准测试中表现优异,并且在同尺寸开源模型中领先。用户可通过Hugging Face、ModelScope等平台获取模型资源,快速应用于项目中。
Llama-2-70B-Chat-GPTQ - 多量化参数优化的对话生成模型
GithubHuggingfaceLlama 2对话优化对话模型开源项目模型生成文本模型量化
Llama-2-Chat是Meta Llama 2的预训练和微调文本生成模型,专为对话场景优化。在基准测试中表现优异,可与一些知名闭源模型相媲美。GPTQ版本提供多种量化参数,适配不同硬件配置,实现VRAM利用率最大化和优质推理。支持灵活下载分支供用户选择最佳量化配置。
Replete-Coder-Llama3-8B-GGUF - 基于llama.cpp优化的高效量化方法提升文本生成性能
GithubHuggingfaceReplete-Coder-Llama3-8B开源项目数据集文本生成模型模型压缩量化
该开源项目利用llama.cpp进行模型量化,适用于HumanEval和AI2推理挑战等任务,提供多种量化选项如Q8_0和Q6_K,适应不同内存要求,同时优化性能表现。I-quant量化在低于Q4时表现良好,用户可依据自己的设备内存和GPU VRAM选择合适的量化格式,通过huggingface-cli便捷获取所需文件。
Qwen2.5-72B-Instruct-GGUF - 大语言模型多种量化版本集合 适配不同硬件配置
GithubHuggingfaceQwen2.5-72Bllama.cpp人工智能模型内存优化开源项目模型模型量化
该项目提供了Qwen2.5-72B-Instruct模型的18种量化版本,文件大小范围为23GB至77GB。使用llama.cpp的最新量化技术,包括K-quants和I-quants系列。所有版本均经imatrix优化,并更新了上下文长度设置和分词器。项目还提供了详细的性能对比和设备兼容性指南,方便用户根据自身硬件配置选择合适版本。这些模型特别适合在LM Studio等推理引擎上运行。
Llama-2-7B-Chat-GGUF - Llama 2对话模型的量化版本 支持多种推理环境
GGUFGithubHuggingfaceLlama 2人工智能大语言模型开源项目模型量化
Llama-2-7B-Chat-GGUF是Meta公司Llama 2对话模型的GGUF格式量化版本。该模型在保持性能的同时显著减小了体积,支持CPU和GPU推理。提供多种量化精度选择,适用于聊天机器人、问答系统等对话场景。作为开源大语言模型,它具有良好的效率和精确度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号