Project Icon

whisper-large-v3-ru-podlodka

基于Whisper Large V3的俄语优化语音识别模型

该模型是基于Whisper Large V3架构,专为俄语语音识别优化。在Podlodka.io数据集上,含标点和大写的字错误率(WER)为20.91%,不含标点的WER为10.987%。在Russian Librispeech数据集上,不含标点的WER达到9.795%。模型经过taiga_speech_v2、podlodka_speech和rulibrispeech等多个俄语数据集训练,适用于各种俄语语音识别场景。

wav2vec2-large-xlsr-53-russian - 基于XLSR-53的俄语语音识别微调模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53俄语开源项目模型语音识别
该项目是一个基于wav2vec2-large-xlsr-53的俄语语音识别微调模型。经Common Voice 6.1和CSS10数据集训练,适用于16kHz采样的语音输入。模型在Common Voice ru测试集上实现13.3%词错误率和2.88%字符错误率,加入语言模型后性能提升至9.57%和2.24%。支持通过HuggingSound库或自定义脚本使用,可应用于多种俄语语音识别场景。
whisper-large-v3-turbo - 乌兹别克语语音识别模型的高性能解决方案
Common VoiceGithubHuggingfaceWhisper乌兹别克语开源项目模型模型微调语音识别
Whisper Large v3 Turbo是一个针对乌兹别克语优化的语音识别模型,基于OpenAI的Whisper大型模型微调而来。该模型在Common Voice 16.1数据集上训练,在测试集达到28.26%的词错误率,展现了良好的识别能力。模型使用Adam优化器和线性学习率策略,经过1万步训练。这一模型为乌兹别克语自动语音识别应用提供了有效工具。
whisper-large-v3 - 突破性多语言语音识别与翻译模型
GithubHuggingfaceOpenAIWhisper多语言开源项目模型语音翻译语音识别
Whisper large-v3是OpenAI开发的新一代语音识别和翻译模型,支持100多种语言。相比前代模型,它采用128个梅尔频率通道并新增粤语语言标记,将各语言错误率降低10-20%。模型可用于语音转录和翻译任务,易于集成应用。Whisper large-v3展现出卓越的泛化能力,为语音识别技术带来重大进展。
whisper-large-v3-turbo - 精简版Whisper语音识别系统的突破性进展
GithubHuggingfaceWhisper多语言开源项目模型模型蒸馏自动语音识别语音识别
Whisper large-v3-turbo通过模型蒸馏技术对原版Whisper进行优化,将解码层从32减少到4层,在仅造成轻微性能损失的情况下显著提升了处理速度。该模型继承了Whisper优秀的多语言处理能力,支持超过100种语言的语音识别和翻译任务,能够适应不同场景的音频输入。基于高效的架构设计,此模型在降低计算资源需求的同时保持了稳定的识别准确率。
whisper-large-v3-turbo - OpenAI Whisper large-v3-turbo 快速多语言语音识别与翻译模型
AI模型GithubHuggingfaceTransformersWhisper多语言开源项目模型语音识别
Whisper large-v3-turbo是OpenAI推出的优化版语音识别和翻译模型。它在保持高质量输出的同时大幅提升了处理速度,支持100多种语言。该模型在噪声环境和不同口音下表现稳定,具备零样本学习能力。适用于实时转录、字幕生成等场景,代表了语音AI技术的最新进展。
whisper-large-v3-german - 德语语音识别优化模型
GithubHuggingfaceOpenAIWhisper开源项目德语模型自动字幕语音识别
基于Whisper Large v3,专为德语语音识别优化,在转录、命令识别、字幕生成等方面表现优秀。词错误率为3.002%,字符错误率为0.81%,适合高效使用。
whisper-large-v3-french-distil-dec8 - 优化法语语音识别的内存使用和推理效率
GithubHuggingfaceWhisper-Large-V3-French-Distil-Dec8开源项目推理速度模型法语自动语音识别语音转录
Whisper-Large-V3-French-Distil通过减少解码层数和优化推理时间,实现法语语音识别的高效性。该模型支持多种库,如transformers和openai-whisper,并能与原版Whisper-Large-V3-French模型结合使用,增强推理速度和结果一致性。评估数据表明其在多语料库中将单词错误率(WER)降至较低水平。
ruRoberta-large - 面向俄语的大规模预训练语言模型 具备强大Transformer架构
GithubHuggingfaceTransformersruRoberta-large俄语开源项目模型自然语言处理预训练模型
ruRoberta-large是SberDevices团队开发的俄语预训练语言模型,采用Transformer架构。模型使用BBPE分词器,词典规模为50,257,参数量达3.55亿,在250GB数据集上训练。主要应用于掩码填充任务,为俄语自然语言处理提供基础支持。该模型是俄语预训练模型家族中的一员,旨在推进俄语NLP研究与应用。
rugpt3large_based_on_gpt2 - 俄语Transformer模型SberDevices团队的训练与评估
GithubHuggingfaceSberDevicesTransformerrugpt3large_based_on_gpt2开源项目模型语言模型预训练模型
SberDevices团队开发的俄语Transformer模型,基于PyTorch进行训练,使用80B个标记在1024序列长度下进行3轮训练,接着进行2048长度的微调。整个过程耗时14天,最终在测试集上的困惑度为13.6,为俄语处理提供了新的可能性。
whisper - 多语种语音识别与翻译解决方案
GithubOpenAITransformer模型Whisper多语言处理开源项目热门语音识别
Whisper是一个通用语音识别模型,支持多种语言处理任务,如语音翻译和语言识别。该模型基于大规模多样化音频数据集进行训练,利用Transformer技术实现高效的序列到序列学习。用户可以通过简单的命令或Python代码实现快速准确的语音识别与翻译,是一个适用于多种应用场景的强大工具。支持多个模型大小和语言选项,用户可根据需求选择合适的模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号