Project Icon

tct_colbert-msmarco

知识蒸馏技术驱动的密集文档检索深度学习模型

TCT-ColBERT是一个采用知识蒸馏技术的密集文档检索模型。该模型通过教师模型紧耦合方法,实现了BERT模型的轻量化,在维持检索效果的同时提高了运行效率。项目支持Pyserini框架集成,提供完整的模型实现代码。

ms-marco-MiniLM-L-2-v2 - 基于MS Marco训练的跨编码器模型实现高效文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
这是一个基于MS Marco Passage Ranking任务训练的跨编码器模型。主要用于信息检索领域,通过对查询和候选段落编码实现文本排序。模型在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上展现出优秀性能,NDCG@10和MRR@10指标表现突出。支持Transformers和SentenceTransformers两种调用方式,适用于多种应用场景。
ms-marco-electra-base - ELECTRA跨编码器模型提升MS Marco信息检索效率
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
该模型是基于ELECTRA架构的跨编码器,专为MS Marco段落排序任务设计。其主要功能是高效编码查询和段落,用于信息检索的检索和重排序。模型在TREC Deep Learning 2019数据集上达到71.99的NDCG@10分数,MS Marco开发集上MRR@10为36.41,处理速度为每秒340文档。这些指标显示该模型在性能和效率方面达到了良好平衡。
msmarco-MiniLM-L6-en-de-v1 - MSMARCO跨语言文本重排序模型 支持英德双向检索
GithubHuggingfaceMS MARCO信息检索开源项目性能评估搜索排序模型跨语言模型
这是一个基于MS MARCO数据集训练的跨语言文本重排序模型,支持英语和德语文本的相关性排序。模型可处理英语-英语、德语-英语和德语-德语的文本匹配任务。在TREC-DL19和GermanDPR基准测试中表现出色,处理速度可达每秒1600个文档对。兼容SentenceTransformers和Transformers框架,为跨语言信息检索应用提供了高效方案。
msmarco-t5-base-v1 - 基于T5的文档扩展和查询生成模型
GithubHuggingfaceT5doc2query嵌入模型训练开源项目文本生成文档扩展模型
msmarco-t5-base-v1是一个基于T5的doc2query模型,主要用于文档扩展和特定领域训练数据生成。该模型通过生成相关查询,有效缩小词汇搜索的差距,提升BM25等标准索引的检索性能。此外,它能生成(查询,文本)对,用于训练高效的密集嵌入模型。该模型以google/t5-v1_1-base为基础进行微调,在MS MARCO数据集上完成了约4轮训练。
msmarco-MiniLM-L12-en-de-v1 - 基于MS MARCO的英德双语文本重排序模型
GithubHuggingfaceMS Marco信息检索开源项目德英翻译模型自然语言处理跨语言检索模型
基于MS MARCO数据集开发的英德双语跨编码器模型,主要用于文本段落重排序。模型在TREC-DL19评测中NDCG@10分别达到72.94(英-英)和66.07(德-英),在GermanDPR数据集上MRR@10为49.91。支持SentenceTransformers和Transformers框架,处理速度为900对文档/秒,适用于跨语言信息检索场景。
msmarco-distilbert-base-v3 - 基于DistilBERT的文本向量化模型支持语义搜索与文本聚类
DistilBertGithubHuggingfacesentence-transformers向量映射开源项目模型自然语言处理语义搜索
msmarco-distilbert-base-v3是一个文本向量化模型,可将文本转换为计算机可理解的向量形式。基于sentence-transformers框架开发,主要应用于文本相似度计算、语义搜索和文本聚类等场景。该模型采用轻量级的DistilBERT架构,在保持性能的同时提高了处理效率。
monot5-base-msmarco - MS MARCO数据集优化的T5-base重排模型
GithubHuggingfaceMS MARCOT5-base开源项目文档模型训练重排序
这个T5-base模型经过在MS MARCO段落数据集上的10万步微调,以提高排序性能。虽然主要适用于MS MARCO数据集,但在其他数据集上进行无监督推理时,建议使用castorini/monot5-base-msmarco-10k版本。可以通过提供的链接查看使用示例,包括简单的重排序示例,以及在MS MARCO和Robust04上的应用。该预训练序列到序列模型在文档排名中的应用已在相关论文中详细描述。
msmarco-bert-base-dot-v5 - BERT语义搜索模型 用于高效文本编码和相似度计算
BERTGithubHuggingfaceMS MARCO数据集sentence-transformers嵌入向量开源项目模型语义搜索
msmarco-bert-base-dot-v5是一个语义搜索模型,基于sentence-transformers框架开发。该模型将文本映射到768维向量空间,在MS MARCO数据集上训练而成。它能高效进行文本编码和相似度计算,支持通过sentence-transformers或HuggingFace Transformers库集成使用。这个模型适用于语义搜索等多种自然语言处理任务,为开发者提供了便捷的文本分析工具。
msmarco-distilbert-base-tas-b - 高效语义搜索句子嵌入模型
DistilBertGithubHuggingfacesentence-transformers嵌入模型开源项目模型自然语言处理语义搜索
msmarco-distilbert-base-tas-b是一个基于sentence-transformers的语义搜索模型。它将句子和段落映射到768维向量空间,专为查询-文档匹配优化。模型易于使用,可通过sentence-transformers库集成,在信息检索和语义相似性任务中表现出色。这个开源项目为开发者提供了一个高效的语义搜索解决方案。
dragon-plus-context-encoder - 基于BERT的密集检索器实现多样化文档检索
BERTDRAGON+GithubHuggingface密集检索开源项目模型模型训练特征提取
dragon-plus-context-encoder是一个基于BERT的密集检索器,由RetroMAE初始化并在MS MARCO语料库上进行了进一步训练。该模型使用非对称双编码器结构,在MARCO Dev和BEIR基准测试中分别达到39.0和47.4的得分。通过HuggingFace Transformers,研究人员可以轻松使用该模型进行查询和上下文编码,实现文本相似度计算和文档检索。此外,项目还提供了基于RoBERTa的变体,为不同需求的用户提供了选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号