Project Icon

bcms-bertic-ner

BERTić微调模型实现BCMS语言的高效命名实体识别

bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。

roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
Medical-NER - DeBERTa微调的医学命名实体识别模型
DeBERTaGithubHuggingfaceNER模型token-classification医学数据集医疗实体识别开源项目模型
该模型基于DeBERTa在PubMED数据集上微调,可识别41种医学实体,如诊断、症状和治疗。它利用先进的自然语言处理技术从医疗文本中准确提取关键信息,支持临床决策和医学研究。模型可通过Hugging Face推理API或transformers库轻松使用,为医疗信息处理提供了便捷工具。
nerkor-cars-onpp-hubert - 匈牙利语命名实体识别模型实现30余类实体智能检测
GithubHuggingfaceNerKorOntoNotes命名实体识别开源项目机器学习模型语料库标注
这款匈牙利语命名实体识别模型基于SZTAKI-HLT/hubert-base-cc架构开发,具备多样化的实体识别能力。模型可识别人名、地点、组织机构等基础实体,同时支持日期、时间、货币等数值型实体,总计超过30种实体类型。通过NerKor+CARS-ONPP语料库训练,最大处理序列长度为448,能够有效完成匈牙利语文本中的实体分析工作。
ner-german-large - Flair框架驱动的德语大规模命名实体识别模型
FlairGithubHuggingfaceNER开源项目德语命名实体识别机器学习模型自然语言处理
这是一个基于Flair框架的德语大规模命名实体识别(NER)模型。它可识别人名、地名、组织名和其他名称四类实体。模型结合了文档级XLM-R嵌入和FLERT技术,在CoNLL-03德语修订版数据集上获得92.31的F1分数。研究者可通过Flair库轻松调用此模型进行NER任务。项目同时提供了使用示例和训练脚本,便于进一步开发和优化。
heBERT_NER - HeBERT: 专为希伯来语设计的命名实体识别和情感分析模型
GithubHeBERTHuggingface命名实体识别开源项目情感分析情感识别情绪用户生成内容模型
HeBERT是一个基于Google BERT架构的希伯来语模型,通过希伯来语OSCAR、维基百科以及情感用户生成内容数据集进行训练。它能够识别希伯来语文本中的人名、组织和地理位置等命名实体,并在测试中表现出色。此外,HeBERT还支持情感识别和情绪分析,研究人员和开发者可以在Huggingface平台上访问此模型。该工具适合需要进行深入希伯来语文本分析的用户。
ner-english - Flair框架英语命名实体识别模型 准确率93%
FlairGithubHuggingface命名实体识别序列标注开源项目模型深度学习自然语言处理
该模型是Flair框架的标准英语命名实体识别(NER)模型,能识别人名、地名、组织名和其他名称四类实体。采用Flair嵌入和LSTM-CRF架构,在CoNLL-03数据集上F1分数达93.06%。用户可通过Flair库轻松加载使用。模型提供了详细的训练脚本和引用信息,方便研究人员进一步探索和引用。
biomedical-ner-all - 基于英语的生物医学实体识别AI模型
AIGithubHuggingfaceMaccrobatNamed Entity Recognitiontransformers库开源项目模型生物医学
该AI模型基于Maccrobat数据集训练,可以识别107种生物医学实体,适用于案例报告等文本工作。通过distilbert-base-uncased构建,拥有低碳排放(0.0279千克)和30.17分钟的训练时间。通过Huggingface API或transformers库,可便捷应用于生物医学领域;教程视频提供详细使用说明。
bert-ner-japanese - 日本语固有表达识别,使用BERT模型实现
BERTGithubHuggingface固有表现抽取开源项目日本机器学习模型自然语言处理
本项目利用BertForTokenClassification模型,实现高效的日本语固有表达识别,可识别八种类别,如人名、法人名和地名等,以满足多样化的语言处理需求。该项目基于东北大学的日本语BERT模型和stockmarkteam的Wikipedia数据集进行训练,通过安装transformers库等,即可实现快速识别,适合应用于IT和学术研究领域的文本分析。
bert-base-japanese-v3-ner-wikipedia-dataset - 基于维基百科数据集的日语命名实体识别BERT模型
BERTGithubHuggingfaceWikipedia数据集固有表現認識大规模语言模型开源项目模型自然语言处理
本项目提供了一个基于BERT的日语命名实体识别模型,该模型使用维基百科数据集进行训练。模型能够识别日语文本中的人名、地名等实体,可通过Transformers库轻松调用。项目源自《大规模语言模型入门》一书,提供了使用示例和相关资源链接,采用Apache 2.0许可证。
xlm-roberta-large-wnut2017 - XLM-RoBERTa模型在多语言命名实体识别中的应用
GithubHuggingfaceNERTransformerXLM-RoBERTa开源项目模型模型微调自然语言处理
xlm-roberta-large-wnut2017是一个微调用于多语言命名实体识别的XLM-RoBERTa模型,具备多语言处理能力。使用者可以轻松地调用该模型以增强语言信息提取的效率。详情请参考TNER官方库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号