Project Icon

kafka-stack-docker-compose

Docker Compose快速部署Kafka集群及相关组件

kafka-stack-docker-compose项目提供多种Docker Compose配置,用于部署Kafka集群及相关组件。支持单节点和多节点的Zookeeper与Kafka配置,并集成Schema Registry、REST Proxy等工具。该项目模拟真实部署环境,解决Docker网络问题,支持跨平台使用。开发者可通过简单的Docker Compose命令快速启动Kafka环境,适用于开发和测试场景。

Actions Status

An open-source project by Conduktor.io

This project is sponsored by Conduktor.io, a graphical desktop user interface for Apache Kafka.

Once you have started your cluster, you can use Conduktor to easily manage it. Just connect against localhost:9092. If you are on Mac or Windows and want to connect from another container, use host.docker.internal:29092

kafka-stack-docker-compose

This replicates as well as possible real deployment configurations, where you have your zookeeper servers and kafka servers actually all distinct from each other. This solves all the networking hurdles that comes with Docker and docker compose, and is compatible cross platform.

UPDATE: No /etc/hosts file changes are necessary anymore. Explanations at: https://rmoff.net/2018/08/02/kafka-listeners-explained/

Stack version

  • Conduktor Platform: latest
  • Zookeeper version: 3.6.3 (Confluent 7.3.2)
  • Kafka version: 3.3.0 (Confluent 7.3.2)
  • Kafka Schema Registry: Confluent 7.3.2
  • Kafka Rest Proxy: Confluent 7.3.2
  • Kafka Connect: Confluent 7.3.2
  • ksqlDB Server: Confluent 7.3.2
  • Zoonavigator: 1.1.1

For a UI tool to access your local Kafka cluster, use the free version of Conduktor

Requirements

Kafka will be exposed on 127.0.0.1 or DOCKER_HOST_IP if set in the environment. (You probably don't need to set it if you're not using Docker-Toolbox)

Docker-Toolbox

Docker toolbox is deprecated and not maintained anymore for several years. We can't guarantee this stack will work with Docker Toolbox, but if you want to try anyway, please export your environment before starting the stack:

export DOCKER_HOST_IP=192.168.99.100

(your docker machine IP is usually 192.168.99.100)

Apple M1 support

Confluent platform supports Apple M1 (ARM64) since version 7.2.0! Basically, this stack will work out of the box.

If you want to downgrade confluent platform version, there are two ways:

  1. Add platform: linux/amd64. It will work as docker is able to emulate AMD64 instructions.
  2. Previous versions have been built for ARM64 by the community. If you want to use it, just change the image in the corresponding yml. Since it is a not an official image, use it at your own risks.

Full stack

To ease you journey with kafka just connect to localhost:8080

login: admin@admin.io password: admin

  • Conduktor-platform: $DOCKER_HOST_IP:8080
  • Single Zookeeper: $DOCKER_HOST_IP:2181
  • Single Kafka: $DOCKER_HOST_IP:9092
  • Kafka Schema Registry: $DOCKER_HOST_IP:8081
  • Kafka Rest Proxy: $DOCKER_HOST_IP:8082
  • Kafka Connect: $DOCKER_HOST_IP:8083
  • KSQL Server: $DOCKER_HOST_IP:8088
  • (experimental) JMX port at $DOCKER_HOST_IP:9001

Run with:

docker compose -f full-stack.yml up
docker compose -f full-stack.yml down

** Note: if you find that you can not connect to localhost:8080 please run docker compose -f full-stack.yml build to rebuild the port mappings.

Single Zookeeper / Single Kafka

This configuration fits most development requirements.

  • Zookeeper will be available at $DOCKER_HOST_IP:2181
  • Kafka will be available at $DOCKER_HOST_IP:9092
  • (experimental) JMX port at $DOCKER_HOST_IP:9999

Run with:

docker compose -f zk-single-kafka-single.yml up
docker compose -f zk-single-kafka-single.yml down

Single Zookeeper / Multiple Kafka

If you want to have three brokers and experiment with kafka replication / fault-tolerance.

  • Zookeeper will be available at $DOCKER_HOST_IP:2181
  • Kafka will be available at $DOCKER_HOST_IP:9092,$DOCKER_HOST_IP:9093,$DOCKER_HOST_IP:9094

Run with:

docker compose -f zk-single-kafka-multiple.yml up
docker compose -f zk-single-kafka-multiple.yml down

Multiple Zookeeper / Single Kafka

If you want to have three zookeeper nodes and experiment with zookeeper fault-tolerance.

  • Zookeeper will be available at $DOCKER_HOST_IP:2181,$DOCKER_HOST_IP:2182,$DOCKER_HOST_IP:2183
  • Kafka will be available at $DOCKER_HOST_IP:9092
  • (experimental) JMX port at $DOCKER_HOST_IP:9999

Run with:

docker compose -f zk-multiple-kafka-single.yml up
docker compose -f zk-multiple-kafka-single.yml down

Multiple Zookeeper / Multiple Kafka

If you want to have three zookeeper nodes and three kafka brokers to experiment with production setup.

  • Zookeeper will be available at $DOCKER_HOST_IP:2181,$DOCKER_HOST_IP:2182,$DOCKER_HOST_IP:2183
  • Kafka will be available at $DOCKER_HOST_IP:9092,$DOCKER_HOST_IP:9093,$DOCKER_HOST_IP:9094

Run with:

docker compose -f zk-multiple-kafka-multiple.yml up
docker compose -f zk-multiple-kafka-multiple.yml down

FAQ

Kafka

Q: Kafka's log is too verbose, how can I reduce it?

A: Add the following line to your docker compose environment variables: KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO". Full logging control can be accessed here: https://github.com/confluentinc/cp-docker-images/blob/master/debian/kafka/include/etc/confluent/docker/log4j.properties.template

Q: How do I delete data to start fresh?

A: Your data is persisted from within the docker compose folder, so if you want for example to reset the data in the full-stack docker compose, do a docker compose -f full-stack.yml down.

Q: Can I change the zookeeper ports?

A: yes. Say you want to change zoo1 port to 12181 (only relevant lines are shown):

  zoo1:
    ports:
      - "12181:12181"
    environment:
        ZOO_PORT: 12181
        
  kafka1:
    environment:
      KAFKA_ZOOKEEPER_CONNECT: "zoo1:12181"

Q: Can I change the Kafka ports?

A: yes. Say you want to change kafka1 port to 12345 (only relevant lines are shown). Note only LISTENER_DOCKER_EXTERNAL changes:

  kafka1:
    image: confluentinc/cp-kafka:7.2.1
    hostname: kafka1
    ports:
      - "12345:12345"
    environment:
      KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka1:19092,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:12345,DOCKER://host.docker.internal:29092

Q: Kafka is using a lot of disk space for testing. Can I reduce it?

A: yes. This is for testing only!!! Reduce the KAFKA_LOG_SEGMENT_BYTES to 16MB and the KAFKA_LOG_RETENTION_BYTES to 128MB

  kafka1:
    image: confluentinc/cp-kafka:7.2.1
    ...
    environment:
      ...
      # For testing small segments 16MB and retention of 128MB
      KAFKA_LOG_SEGMENT_BYTES: 16777216
      KAFKA_LOG_RETENTION_BYTES: 134217728

Q: How do I expose kafka?

A: If you want to expose kafka outside of your local machine, you must set KAFKA_ADVERTISED_LISTENERS to the IP of the machine so that kafka is externally accessible. To achieve this you can set LISTENER_DOCKER_EXTERNAL to the IP of the machine. For example, if the IP of your machine is 50.10.2.3, follow the sample mapping below:

  kafka1:
    image: confluentinc/cp-kafka:7.2.1
    ...
    environment:
      ...
      KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka2:19093,EXTERNAL://50.10.2.3:9093,DOCKER://host.docker.internal:29093

Q: How do I add connectors to kafka connect?

Create a connectors directory and place your connectors there (usually in a subdirectory) connectors/example/my.jar

The directory is automatically mounted by the kafka-connect Docker container

OR edit the bash command which pulls connectors at runtime

confluent-hub install --no-prompt debezium/debezium-connector-mysql:latest
        confluent-hub install 

Q: How to disable Confluent metrics?

Add this environment variable

KAFKA_CONFLUENT_SUPPORT_METRICS_ENABLE=false
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号