Project Icon

dolly-v2-7b

基于Pythia的开源指令微调语言模型

dolly-v2-7b是基于Pythia-6.9b架构的指令微调语言模型,通过15000条高质量指令数据训练而成。模型支持问答、分类、生成等核心功能,并采用MIT许可证开放商用。作为开源项目,其突出特点是具备可靠的指令理解能力,为AI应用开发提供了实用的基础模型选择。

OLMo-7B - 专注于语言模型科学的开放模型
GithubHuggingfaceOLMo开源项目模型模型性能训练数据集语言模型
OLMo系列模型由Allen Institute for AI开发,旨在推进语言模型科学。该系列模型使用Dolma数据集进行训练,提供诸如OLMo 7B等多种版本及详细的训练检查点和代码支持。这些模型可用于英文学术研究,并可在Hugging Face平台上获取。项目获得哈佛大学、Databricks、AMD等机构支持,并在MMLU测试中显示出明显的性能提升。
pythia-2.8b - 大规模语言模型研究工具包,提供多尺度模型和训练检查点
GithubHuggingfacePyTorchPythia人工智能开源项目机器学习模型语言模型
Pythia-2.8B是EleutherAI开发的大规模语言模型研究套件中的一员,专注于促进模型可解释性研究。该模型包含25亿参数,基于Transformer架构,使用Pile数据集训练。提供154个训练检查点,便于深入分析模型演化过程。尽管主要用于研究,其性能与同等规模的OPT和GPT-Neo模型相当。Pythia-2.8B采用Apache 2.0许可证,可通过Hugging Face Transformers库轻松部署。
Mistral-7B-Instruct-v0.2 - 开源大语言模型支持32K上下文窗口的指令微调版本
GithubHuggingfaceMistral-7B-Instruct-v0.2大语言模型开源项目指令微调推理模型自然语言处理
Mistral-7B-Instruct-v0.2是基于Mistral-7B-v0.2进行指令微调的语言模型。该版本扩展了上下文窗口至32K,采用Rope-theta=1e6,并移除了滑动窗口注意力机制。模型提供了简化的指令格式和聊天模板,便于用户交互。作为一个快速演示,它展示了基础模型通过微调可以达到的性能水平。但需注意,该模型尚未包含内容审核功能,在特定场景下使用时应当谨慎。
neural-chat-7b-v3-1 - 在英特尔Gaudi2上优化的mistralai 7B语言模型
GithubHuggingfaceIntel Gaudi 2大语言模型开源项目数据集模型模型微调量化推理
neural-chat-7b-v3-1模型经过优化,利用mistralai/Mistral-7B-v0.1基础模型和DPO方法,适用于多种语言任务。结合Open-Orca/SlimOrca数据集,提升了ARC、HellaSwag与TruthfulQA等多项评估指标表现,并支持INT4、BF16等多种推理模式。非常适合高性能语言生成与处理应用,详细信息和使用指导可在GitHub和Hugging Face Leaderboard上查看。
Llama-2-7b-hf - Meta开发的Llama 2开源大语言模型系列
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama 2是Meta开发的开源大语言模型系列,包含7B、13B和70B三种参数规模。模型采用优化的Transformer架构,支持4k上下文长度,适用于对话等多种自然语言任务。Llama 2在多项基准测试中表现优异,提供预训练和微调版本,可用于商业和研究。该项目开放了详细的使用说明和评估数据,促进了大语言模型的开放研究。
Mistral-7B-Instruct-v0.1 - 多种推理方式支持的指令调优大语言模型
GithubHuggingfaceMistral-7B-Instruct-v0.1大语言模型开源项目指令微调机器学习模型自然语言处理
Mistral-7B-Instruct-v0.1是基于Mistral-7B-v0.1的指令调优大语言模型。该模型通过多种公开对话数据集微调,支持mistral_common、mistral_inference和transformers等多种推理方式。它采用分组查询注意力和滑动窗口注意力机制,结合字节回退BPE分词器,提供简单的指令格式,适用于对话生成任务。模型架构优化使其在保持高性能的同时,具备良好的通用性和易用性。
dolphin-2.7-mixtral-8x7b - 灵活的AI模型助力编码任务,增强开发效能与合规
DolphinGithubHuggingfaceMixtral图灵测试开源项目模型编程训练模型
Dolphin 2.7是Dolphin-2.5/2.6的升级版,通过transformers库的Mixtral修正和门层调整,提升了性能。该模型在编码任务中表现优异,同时进行去偏见处理以提高合规性。需注意模型对用户请求的高度顺从性,建议用户自行设置合规层确保安全。项目由Convai资助,适用于多种高效和合规的AI应用。
Mistral-7B-Instruct-v0.2-llamafile - 高效多功能的开源语言模型
AI模型GithubHuggingfaceMistral-7B-Instruct-v0.2大型语言模型开源项目指令微调模型自然语言处理
Mistral-7B-Instruct-v0.2是Mistral AI公司开发的改进版指令微调语言模型,拥有70亿参数。该模型支持多种量化格式和llamafile格式,可在CPU和GPU上高效运行,适用于对话、文本生成等多种场景。用户可根据设备选择合适的量化版本,通过命令行或Python代码轻松使用。模型在多项任务中表现优异,为开发者和研究者提供了强大的开源语言处理工具。
Qwen2-7B - 开源大语言模型在多项基准测试中展现优异性能
GithubHuggingfaceQwen2人工智能大语言模型开源项目机器学习模型自然语言处理
Qwen2-7B是新一代Qwen大语言模型系列的7B参数基础版本。该模型在语言理解、生成、多语言处理、编程、数学和推理等多个领域的基准测试中展现出优异表现,不仅超越了大多数开源模型,还与专有模型实力相当。Qwen2-7B基于改进的Transformer架构,引入了SwiGLU激活函数、注意力QKV偏置和组查询注意力等创新技术,并优化了分词器以更好地支持多种自然语言和编程语言。
falcon-7b-instruct - 高性能指令微调语言模型
Apache 2.0Falcon-7B-InstructGithubHuggingfaceTII大语言模型开源项目模型自然语言处理
Falcon-7B-Instruct是TII基于Falcon-7B开发的指令微调语言模型,采用7B参数的因果解码器架构。该模型经过聊天和指令数据集的优化,集成了FlashAttention和多查询技术,在英语和法语任务中表现优异。它适用于直接进行对话和指令处理,但不建议进一步微调。运行该模型需要至少16GB内存,代码以Apache 2.0许可开源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号