Project Icon

bert-base-turkish-128k-uncased

土耳其BERTurk无标记语言模型

土耳其BERTurk模型由德国巴伐利亚州立图书馆的MDZ团队开发,并得到土耳其NLP社区的支持。此无标记BERT模型使用包含土耳其语OSCAR语料库、维基百科、OPUS语料库及Kemal Oflazer提供的语料进行训练,总语料量为35GB。模型在Google的TPU v3-8上通过TensorFlow Research Cloud训练了200万步,词汇量为128k,目前支持PyTorch-Transformers。

bert-large-portuguese-cased - BERT大规模预训练模型助力巴西葡萄牙语NLP任务
BERTGithubHuggingface开源项目模型神经网络自然语言处理葡萄牙语预训练模型
bert-large-portuguese-cased是一个专为巴西葡萄牙语开发的BERT预训练模型。该模型在命名实体识别、句子相似度和文本蕴含等多项NLP任务中表现出色。模型提供Base和Large两种版本,参数量分别为1.1亿和3.35亿。它支持掩码语言建模和BERT嵌入生成,为巴西葡萄牙语NLP研究奠定了坚实基础。
bert-base-multilingual-cased-finetuned-langtok - 基于多语言BERT的语言识别模型实现99.03%准确率
BERTGithubHuggingface多语言模型开源项目微调模型自然语言处理语言识别
这是一个基于bert-base-multilingual-cased的语言识别微调模型。模型在评估集上的准确率为99.03%,F1分数达到0.9087。模型采用Adam优化器和线性学习率调度器,经过3轮训练完成。开发框架使用Transformers 4.44.2和PyTorch 2.4.1,可应用于语言识别相关任务。
bert-base-spanish-wwm-cased - 基于大规模语料库训练的西班牙语BERT模型
BETOGithubHuggingface基准测试开源项目模型自然语言处理西班牙语预训练模型
BETO是一个基于大规模西班牙语语料库训练的BERT模型,采用全词遮蔽技术,提供uncased和cased两个版本。在词性标注、命名实体识别和文本分类等多项西班牙语基准测试中,BETO表现优于多语言BERT。研究者可通过Hugging Face Transformers库轻松使用该模型,为西班牙语自然语言处理研究和应用提供有力支持。
bert-base-thai-upos - 基于泰语维基百科预训练的BERT词性标注与依存分析模型
BERTGithubHuggingfaceWikipedia依存句法分析开源项目模型泰语词性标注
bert-base-thai-upos是一个在泰语维基百科语料上预训练的BERT模型,专注于词性标注和依存句法分析。该模型采用通用词性(UPOS)标签集,可通过Transformers库或esupar工具轻松集成。它为泰语自然语言处理任务提供了可靠的基础,尤其适合需要精确词性和句法信息的应用场景。研究人员和开发者可以利用这一模型来增强泰语文本分析能力。
opus-mt-tc-big-tr-en - OPUS-MT 项目开源的土耳其语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer土耳其语开源项目机器翻译模型英语
opus-mt-tc-big-tr-en 是 OPUS-MT 项目开发的土耳其语到英语神经机器翻译模型。该模型基于 Marian NMT 框架训练,并转换为 PyTorch 格式以兼容 Hugging Face transformers 库。在多个测试集上表现优异,Tatoeba 测试集上 BLEU 分数达 57.6。模型采用 transformer-big 架构,使用 OPUS 和 Tatoeba Challenge 数据训练,为研究人员和开发者提供了高质量的开源翻译工具。
bert-base-dutch-cased - 荷兰语BERT预训练模型,适用于多任务自然语言处理
BERTjeGithubGroNLPHuggingfaceUniversity of Groningen开源项目模型荷兰语模型预训练模型
BERTje是一个由格罗宁根大学开发的荷兰语BERT预训练模型,目前托管于GroNLP组织。该模型保持原有权重,支持文本分析和自然语言处理,满足不同任务需求。BERTje在荷兰语相关应用中表现出色,提供高效的语言处理能力。
ruBert-base - 专为俄语遮蔽填充任务优化的Transformer预训练语言模型
GithubHuggingfacePyTorchTransformersruBert开源项目模型自然语言处理语言模型
ruBert-base是一个专为俄语遮蔽填充任务优化的预训练语言模型。该模型基于Transformer架构,由SberDevices团队开发,采用BPE分词器,词典大小12万token,模型参数量1.78亿。模型使用30GB训练数据,是俄语自然语言处理领域的重要研究成果。ruBert-base遵循Apache-2.0许可证,为俄语NLP应用提供了强大的基础支持。
bert-base - KLUE BERT base为韩语自然语言处理提供强大支持
BERTGithubHuggingfaceKLUE开源项目模型自然语言处理语言模型韩语
KLUE BERT base是一个专门针对韩语自然语言处理任务的预训练模型。它基于62GB多样化韩语语料库训练,采用创新的形态素子词分词技术。在KLUE基准测试中,该模型在主题分类、语义相似度和命名实体识别等多项任务上展现出优异性能。此外,研究团队也注重解决数据偏见和隐私保护问题,为韩语NLP领域提供了重要工具。
bert-base-parsbert-ner-uncased - ParsBERT-NER:高性能波斯语命名实体识别模型
BERTGithubHuggingface命名实体识别开源项目机器学习模型波斯语自然语言处理
ParsBERT-NER是一个专门用于波斯语命名实体识别的预训练模型。该模型基于BERT架构,在ARMAN和PEYMA数据集上进行微调,支持识别组织、地点、人名等多种实体类型。在多个波斯语NER基准测试中,ParsBERT-NER展现出卓越性能,F1分数最高达98.79%。研究人员和开发者可通过Hugging Face Transformers库轻松使用这一模型进行波斯语自然语言处理任务。
gbert-base - 基于维基百科训练的高性能德语BERT预训练模型
BERTGithubHaystackHuggingface开源项目德语模型机器学习模型自然语言处理
gbert-base是一款德语BERT预训练模型,由原始German BERT与dbmdz BERT团队于2020年10月联合发布。模型使用维基百科、OPUS和OpenLegalData数据集进行训练,在GermEval18和GermEval14基准测试中取得了显著优于前代模型的性能表现。作为开源项目,该模型采用MIT许可证,可用于多种德语自然语言处理应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号