Project Icon

bert-base-turkish-uncased

巴伐利亚州立图书馆开源的土耳其语预训练BERT模型

巴伐利亚州立图书馆MDZ团队开发的土耳其语BERT模型,基于35GB语料库训练而成,涵盖OSCAR、维基百科及OPUS等多个数据集,包含44亿个标记。该模型采用Google TPU v3-8进行200万步训练,完全兼容PyTorch-Transformers框架,可应用于词性标注、命名实体识别等土耳其语自然语言处理任务。

wangchanberta-base-att-spm-uncased - 基于RoBERTa架构的泰语预训练模型
GithubHuggingfaceWangchanBERTa开源项目机器学习模型泰语模型自然语言处理预训练
WangchanBERTa是一个基于RoBERTa架构的泰语预训练模型,在78.5GB的泰语文本上进行了训练。模型采用SentencePiece分词器,词汇量为25,000个子词。它可用于掩码语言建模、文本分类和标记分类等任务,为泰语自然语言处理提供了基础,适用于情感分析、评分预测、主题分类和命名实体识别等多种应用场景。
bert-large-cased - 大规模双向Transformer预训练英语语言模型
BERTGithubHuggingface开源项目文本分类模型深度学习自然语言处理预训练模型
bert-large-cased是一个在大规模英语语料库上预训练的Transformer模型,采用掩码语言建模和下一句预测任务。模型包含24层、1024隐藏维度、16个注意力头和3.36亿参数,适用于序列分类、标记分类和问答等下游NLP任务。在SQuAD和MultiNLI等基准测试中表现优异。
distilbert-base-german-cased - 轻量级德语BERT预训练模型
DistilBERTGithubHuggingface开源项目德语机器学习模型自然语言处理预训练模型
distilbert-base-german-cased是一个基于知识蒸馏技术的德语BERT压缩模型。该模型在维持BERT基础功能的同时减少了模型体积和运算资源消耗,可用于资源受限环境下的德语自然语言处理任务。模型支持大小写敏感的文本处理功能。
ruBert-base - 专为俄语遮蔽填充任务优化的Transformer预训练语言模型
GithubHuggingfacePyTorchTransformersruBert开源项目模型自然语言处理语言模型
ruBert-base是一个专为俄语遮蔽填充任务优化的预训练语言模型。该模型基于Transformer架构,由SberDevices团队开发,采用BPE分词器,词典大小12万token,模型参数量1.78亿。模型使用30GB训练数据,是俄语自然语言处理领域的重要研究成果。ruBert-base遵循Apache-2.0许可证,为俄语NLP应用提供了强大的基础支持。
deberta-v3-base - 高效预训练语言模型提升自然语言理解任务性能
DeBERTaGithubHuggingface开源项目文本分类模型深度学习自然语言处理预训练模型
DeBERTa-v3-base是一种改进的预训练语言模型,采用ELECTRA风格预训练和梯度解耦嵌入共享技术。该模型在SQuAD 2.0和MNLI等自然语言理解任务上表现优异,超越了RoBERTa等基准模型。它具有12层结构、768维隐藏层、86M骨干参数和128K词表。研究人员可通过Hugging Face Transformers库对其进行微调,应用于多种自然语言处理任务。
bert-base-french-europeana-cased - 基于欧洲数字图书馆的法语BERT模型
BERTEuropeanaGithubHugging FaceHuggingface开源项目模型法语自然语言处理
bert-base-french-europeana-cased是基于欧洲数字图书馆法语语料库训练的BERT模型。该模型使用63GB数据,包含110亿个标记,主要涵盖18-20世纪文本。在历史命名实体识别等任务中表现优异,可通过Hugging Face加载使用。此模型为处理历史法语文本提供了有力的语言理解支持。
opus-mt-tc-big-tr-en - OPUS-MT 项目开源的土耳其语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer土耳其语开源项目机器翻译模型英语
opus-mt-tc-big-tr-en 是 OPUS-MT 项目开发的土耳其语到英语神经机器翻译模型。该模型基于 Marian NMT 框架训练,并转换为 PyTorch 格式以兼容 Hugging Face transformers 库。在多个测试集上表现优异,Tatoeba 测试集上 BLEU 分数达 57.6。模型采用 transformer-big 架构,使用 OPUS 和 Tatoeba Challenge 数据训练,为研究人员和开发者提供了高质量的开源翻译工具。
bert-base-multilingual-cased-ner-hrl - 基于mBERT的多语言命名实体识别模型覆盖10种主要语言
GithubHugging FaceHuggingfacebert-base-multilingual-cased命名实体识别多语言模型开源项目模型自然语言处理
bert-base-multilingual-cased-ner-hrl是一个多语言命名实体识别模型,基于mBERT微调而来。该模型支持阿拉伯语、德语等10种主要语言,能够识别地点、组织和人名。模型通过聚合多语种新闻数据集训练,适用于广泛的NER任务,但在特定领域可能存在局限性。使用简单,可通过Transformers库快速部署。模型可通过Hugging Face的Transformers库轻松集成到各种NLP项目中,适用于多语言文本分析、信息提取等任务。然而,由于训练数据限制,在非新闻领域的表现可能需要进一步评估。
bert-base-dutch-cased - BERTje 格罗宁根大学开发的荷兰语BERT模型
BERTjeGithubHuggingface命名实体识别开源项目模型自然语言处理荷兰语模型词性标注
BERTje是格罗宁根大学开发的荷兰语预训练BERT模型。在命名实体识别和词性标注等任务中,它的表现优于多语言BERT等基准模型。BERTje支持PyTorch和TensorFlow,可通过Hugging Face使用。该模型为荷兰语自然语言处理研究和应用提供了有力支持。
opus-mt-tc-big-en-tr - OPUS-MT项目开发的英土双语神经机器翻译模型
GithubHuggingfaceMarian NMTOPUS-MT开源项目机器翻译模型神经网络模型英语到土耳其语
opus-mt-tc-big-en-tr是OPUS-MT项目开发的英语到土耳其语神经机器翻译模型。该模型基于Transformer架构,在多个数据集上表现出色,最高BLEU分数达42.3。模型支持通过Hugging Face Transformers库使用,为英土翻译提供了可靠的解决方案。OPUS-MT项目旨在为全球多种语言对开发开源的神经机器翻译模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号