Project Icon

FlowMeter

实验性网络流量分类与分析工具

FlowMeter是一款实验性网络流量分析工具,通过检查数据包头部来分类和分析网络流量。它可将数据包和流量标记为良性或恶意,具有高准确率和低误报率。该工具还能将数据包归类为流,并提供详细的流量统计信息。FlowMeter主要面向需要在网络数据包上开发和应用机器学习模型的用户,同时作为Deepfence ThreatMapper的预过滤组件。

Documentation GitHub license GitHub stars GitHub issues Slack

FlowMeter

FlowMeter is an experimental utility built for analysing and classifing packets by looking at packet headers.

Primary design goals:

FlowMeter aims to:

  • Classify packets and flows as benign or malicious with high true positives (TP) and low false positives (FP).
  • Use the labeled data to reduce amount of traffic requiring deeper analysis.

Additionally, Deepfence FlowMeter also categorizes packets into flows and shows a rich ensemble of flow data and statistics.

Flowmeter-flows
FlowMeter takes packets and returns file with statistics of flows.
Flowmeter-flowsClassification
Flowmeter takes packets and returns file with statistics of flows and classifies packets as benign or malicious.

When to use FLowMeter

Use FlowMeter if you wish to build and operate machine-learning models on network packet data.

Quick Start

For full instructions, refer to the FlowMeter Documentation.

FlowMeter QuickStart

Who uses FlowMeter?

  • We use FlowMeter internally to quickly analyse and label packets. It forms one part of a project to build a fast pre-filter for packets before we conduct deeper layer-7 analysis in Deepfence ThreatMapper.

Get in touch

Thank you for using FlowMeter.

  • Start with the documentation
  • Got a question, need some help? Find the Deepfence team on Slack
  • GitHub issues Got a feature request or found a bug? Raise an issue
  • productsecurity at deepfence dot io: Found a security issue? Share it in confidence
  • Find out more at deepfence.io

Security and Support

For any security-related issues in the FlowMeter project, contact productsecurity at deepfence dot io.

Please file GitHub issues as needed, and join the Deepfence Community Slack channel.

License

The Deepfence FlowMeter project (this repository) is offered under the Apache2 license.

Contributions to Deepfence FlowMeter project are similarly accepted under the Apache2 license, as per GitHub's inbound=outbound policy.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号