Project Icon

Depth-Anything-V2-Base

更快更精细的单目深度估计模型

Depth-Anything-V2是一款先进的单目深度估计模型,由595K合成标记图像和62M+真实未标记图像训练而成。它在细节表现、鲁棒性和效率上都超越了V1版本,处理速度比基于SD的模型快10倍。采用ViT-B架构,该模型为计算机视觉领域提供了高效的深度预测工具,尤其适用于需要精确深度信息的应用场景。

convnextv2_base.fcmae_ft_in22k_in1k_384 - 高效图像识别与特征开发的开源解决方案
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2是一款基于全卷积掩码自编码器(FCMAE)预训练的图像分类模型,能够高效处理ImageNet-22k和ImageNet-1k数据集。模型拥有88.7M的参数和45.21 GMACs,适合精准的图像识别和特征开发。兼容timm库,支持图像分类、特征图提取和图像嵌入生成等应用场景。通过简单的Python代码即可调用该模型,提升开发效率。
Realistic_Vision_V2.0 - AI驱动的高品质摄影级图像生成模型
AI绘图GithubHuggingfaceMage.Space关键词提示图像生成开源项目模型高质量照片
Realistic_Vision_V2.0是一个开源的AI图像生成模型,专门用于创建逼真的肖像和场景。该模型支持8K超高清输出,能够呈现精细的皮肤纹理和自然的光线效果。为优化生成结果,模型提供了专门的提示模板和负面提示建议。结合特定的VAE和推荐参数,Realistic_Vision_V2.0能够生成高度写实、专业品质的图像。
vit_giant_patch14_dinov2.lvd142m - 基于Vision Transformer的无监督视觉特征提取模型
DINOv2GithubHuggingfaceVision Transformer图像分类图像特征提取开源项目模型自监督学习
该项目介绍了使用DINOv2方法的Vision Transformer(ViT)模型,通过无监督学习在LVD-142M数据集上进行预训练。这一模型适用于图像分类和嵌入,帮助提取稳健的视觉特征以及实现高效的图像识别。ViT模型的参数量为1136.5M和1784.2 GMACs,显现出其出色的性能和灵活性。用户可以在GitHub查看和下载该模型的代码和更多资源。
MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric - 基于3D的高精度图像匹配技术
3D视觉GithubHuggingfaceMASt3R图像匹配开源项目模型深度学习模型计算机视觉
MASt3R是一款开源的图像到3D匹配模型,采用ViT-Large编码器和ViT-Base解码器架构。它结合了CatMLP和DPT技术,能够处理多种分辨率的图像输入。该模型在GitHub上提供了完整的代码和使用说明,适用于需要高精度3D视觉的研究和应用。MASt3R为计算机视觉领域的研究人员和开发者提供了一个强大的工具,有助于推动3D视觉技术的发展。
vit-base-patch16-384 - Vision Transformer:基于图像分块的高效视觉识别模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于Transformer架构的视觉识别模型,在ImageNet-21k上进行预训练,并在ImageNet 2012上微调。模型采用图像分块和序列化处理方法,有效处理384x384分辨率的图像。ViT在多个图像分类基准测试中表现优异,适用于各种计算机视觉任务。该预训练模型为研究人员和开发者提供了快速开发高精度图像识别应用的基础。
vit_base_patch14_reg4_dinov2.lvd142m - 基于寄存器的先进Vision Transformer图像特征模型
DINOv2GithubHuggingfaceVision Transformertimm图像特征提取开源项目模型自监督学习
vit_base_patch14_reg4_dinov2.lvd142m是一款基于寄存器的Vision Transformer图像特征模型。该模型采用自监督DINOv2方法在LVD-142M数据集上预训练,拥有8660万参数,支持518x518分辨率的图像处理。模型适用于图像分类和特征提取,提供简洁的使用方法和代码示例。作为一种无监督学习的先进视觉模型,它为计算机视觉领域提供了新的研究方向和应用可能。
vit_base_patch16_224.dino - 自监督训练的ViT模型实现高效图像特征提取
DINOGithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.dino是一个基于Vision Transformer架构的图像特征提取模型。该模型采用自监督DINO方法在ImageNet-1k数据集上预训练,可用于图像分类和特征提取。模型包含8580万参数,支持224x224像素的输入图像。通过timm库,研究人员可以便捷地将其应用于多种计算机视觉任务,深入探索自监督学习在视觉领域的潜力。
marigold-depth-v1-0 - 基于扩散模型的单目深度估计新方法
GithubHuggingfaceMarigold单目深度估计图像生成器开源项目扩散模型模型零样本迁移
Marigold是一种新型单目深度估计模型,利用Stable Diffusion等现代生成图像模型中的视觉知识。该模型通过合成数据微调,实现了对未知数据的零样本迁移,在单目深度估计任务中达到了领先水平。Marigold不仅展示了扩散模型在计算机视觉领域的应用潜力,还为深度估计技术的研究提供了有力工具。
vit_base_patch8_224.dino - 将自监督DINO方法应用于视觉变换器以增强图像特征提取能力
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
该项目利用Vision Transformer (ViT) 和自监督DINO方法进行图像特征提取,支持图像分类和嵌入应用。模型在ImageNet-1k数据集上进行了预训练,具有85.8M参数,能够处理224 x 224分辨率的图像。由于其参数利用效率高,该模型在大规模数据集上表现良好,适合精确特征提取的视觉任务,增强图像识别及分析能力。通过`timm`库可轻松实现模型调用和图像处理,满足多种计算机视觉应用需求。
vit - 在Habana Gaudi HPU上高效运行ViT模型的配置指南
Gaudi处理器GithubHugging FaceHuggingfaceOptimum Habana图像分类开源项目模型混合精度
了解如何使用Habana Gaudi HPU进行ViT模型高效训练和部署,提供如自定义AdamW和融合梯度剪裁等特定训练参数。支持bf16混合精度训练以提升性能和精度。探索Habana HPU在增强Transformer和Diffuser模型方面的应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号