Project Icon

bert-base-romanian-ner

罗马尼亚语命名实体识别的高级BERT模型

此项目提供了一款经过微调的BERT模型,专注于罗马尼亚语命名实体识别,以优异的性能而著称。模型识别15种实体,如人物、地缘政治实体、地点、组织等,并基于RONEC v2.0数据集训练,拥有超过50万标记及80,283个独特实体。生成的标签采用BIO2格式,使其在命名实体识别任务中表现卓越。用户可通过Transformers库的NER管道或Python包便捷使用该模型。

bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
bert_cased_ner - BERT模型驱动的土耳其语命名实体识别工具
BertTurkGithubHuggingfaceMilliyetNER命名实体识别土耳其语开源项目模型自然语言处理
项目开发了一个专门用于土耳其语的BERT命名实体识别模型。该模型基于MilliyetNER新闻语料库训练,可识别人名、地点和组织三类实体。模型表现优异,测试集F1得分达0.96。提供简洁的Python接口,方便研究者和开发者在土耳其语自然语言处理任务中应用。
xlm-roberta-large-ner-spanish - 基于XLM-Roberta-large的高性能西班牙语命名实体识别模型
CoNLL-2002GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目模型自然语言处理西班牙语
xlm-roberta-large-ner-spanish是一个基于XLM-Roberta-large模型微调的西班牙语命名实体识别(NER)模型。该模型在CoNLL-2002数据集的西班牙语部分上训练,在测试集上实现了89.17的F1分数,展现出优秀的性能。此模型能够有效识别文本中的人名、地名、组织机构等命名实体,为西班牙语自然语言处理任务提供了有力工具。
roberta-large-ontonotes5 - RoBERTa-large模型在OntoNotes 5数据集上的高性能命名实体识别微调版本
GithubHuggingfaceRoBERTaT-NER命名实体识别开源项目模型模型微调自然语言处理
这是roberta-large在OntoNotes 5数据集上的微调模型,专门用于命名实体识别任务。在测试集上,该模型达到了0.909的F1分数(微观)、0.905的精确度和0.912的召回率。模型采用CRF层,最大序列长度128,经过15轮训练。用户可通过tner库轻松应用此模型。它在多种实体类型识别中表现优异,尤其擅长识别地缘政治区域、组织和人物。
xlm-roberta-large-finetuned-conll03-english - XLM-RoBERTa基于命名实体识别模型支持百余种语言
GithubHuggingfaceXLM-RoBERTa命名实体识别多语言模型开源项目模型自然语言处理迁移学习
xlm-roberta-large-finetuned-conll03-english是基于XLM-RoBERTa的多语言命名实体识别模型,预训练涵盖百余种语言,并经英语CoNLL-2003数据集微调。适用于命名实体识别、词性标注等标记分类任务,具备出色的多语言处理能力。模型由Facebook AI团队开发,在Hugging Face平台开放使用。使用时需注意潜在偏见和局限性。
distilbert-base-cased-finetuned-conll03-english - 基于DistilBERT的英语命名实体识别模型
CoNLL-2003DistilBERTGithubHuggingface命名实体识别开源项目模型自然语言处理迁移学习
这是一个基于distilbert-base-cased模型微调的英语命名实体识别(NER)工具。该模型在conll2003英语数据集上训练,对大小写敏感,在验证集上达到98.7%的F1分数。它能够有效识别和分类文本中的人名、地名和组织名等命名实体,为各种自然语言处理任务提供支持。
RobBERT - 为荷兰语自然语言处理提供强大基础的预训练模型
BERTGithubRobBERT开源项目自然语言处理荷兰语模型预训练
RobBERT是基于RoBERTa架构的荷兰语预训练语言模型,在多项荷兰语自然语言处理任务中展现出卓越性能。该模型在39GB荷兰语语料库上进行预训练,可用于情感分析、命名实体识别和词性标注等任务,尤其在小规模数据集上表现突出。RobBERT为荷兰语自然语言处理的研究与应用奠定了坚实基础。
ChineseNER - 多模型支持的中文命名实体识别开源项目
Github中文NER命名实体识别多任务学习开源项目深度学习模型词汇增强
这是一个开源的中文命名实体识别项目,集成了多种深度学习模型。从BiLSTM-CRF到BERT-BiLSTM-CRF,再到多任务学习模型,涵盖了NER领域的主流算法。项目特色包括词汇增强、数据增强和MRC框架等创新功能。同时提供了完整的训练、评估流程和Docker部署方案,便于研究者和开发者使用。项目集成了从BiLSTM-CRF到BERT系列的多种NER模型,并创新性地引入词汇增强、数据增强和MRC框架等技术。不仅提供了详细的模型训练和评估指南,还支持Docker部署,方便研究人员和工程师快速应用到实际场景中。
bert-base-cased - 使用预训练双向Transformer模型提升语言理解能力
BERTGithubHuggingface句子分类开源项目掩码语言建模模型自监督学习预训练
BERT是一种通过自监督学习预训练的双向Transformer模型,旨在改善英语语言理解。基于大型语料库的预训练,使其能学习句子的双向表示,适用于序列分类、标记分类和问答任务。通过Masked Language Modeling和Next Sentence Prediction目标进行预训练,BERT在各类任务中展现出卓越表现,但注意选择合适的训练数据以避免潜在偏见。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号