Project Icon

rustpad

基于Rust的实时协作开源文本编辑器

Rustpad是基于操作转换算法的开源协作文本编辑器,支持浏览器中实时协作编写代码。采用Rust构建服务器,WebAssembly优化文本操作,前端使用TypeScript和React。特点包括自托管、无需数据库、快速轻量、易于部署,适合临时协作编辑需求。Docker镜像仅6MB,支持文档自动过期和可选的SQLite持久化存储。

Rustpad

Docker Pulls Docker Image Size GitHub Workflow Status

Rustpad is an efficient and minimal open-source collaborative text editor based on the operational transformation algorithm. It lets users collaborate in real time while writing code in their browser. Rustpad is completely self-hosted and fits in a tiny Docker image, no database required.


rustpad.io

The server is written in Rust using the warp web server framework and the operational-transform library. We use wasm-bindgen to compile text operation logic to WebAssembly code, which runs in the browser. The frontend is written in TypeScript using React and interfaces with Monaco, the text editor that powers VS Code.

Architecturally, client-side code communicates via WebSocket with a central server that stores in-memory data structures. This makes the editor very fast, allows us to avoid provisioning a database, and makes testing much easier. The tradeoff is that documents are transient and lost between server restarts, or after 24 hours of inactivity.

Development setup

To run this application, you need to install Rust, wasm-pack, and Node.js. Then, build the WebAssembly portion of the app:

wasm-pack build rustpad-wasm

When that is complete, you can install dependencies for the frontend React application:

npm install

Next, compile and run the backend web server:

cargo run

While the backend is running, open another shell and run the following command to start the frontend portion.

npm run dev

This command will open a browser window to http://localhost:5173, with hot reloading on changes.

Testing

To run integration tests for the server, use the standard cargo test command. For the WebAssembly component, you can run tests in a headless browser with

wasm-pack test --chrome --headless rustpad-wasm

Configuration

Although the default behavior of Rustpad is to store documents solely in memory and collect garbage after 24 hours of inactivity, this can be configured by setting the appropriate variables. The application server looks for the following environment variables on startup:

  • EXPIRY_DAYS: An integer corresponding to the number of days that inactive documents are kept in memory before being garbage collected by the server (default 1 day).
  • SQLITE_URI: A SQLite connection string used for persistence. If provided, Rustpad will snapshot document contents to a local file, which enables them to be retained between server restarts and after their in-memory data structures expire. (When deploying a Docker container, this should point to the path of a mounted volume.)
  • PORT: Which local port to listen for HTTP connections on (defaults to 3030).
  • RUST_LOG: Directives that control application logging, see the env_logger docs for more information.

Deployment

Rustpad is distributed as a single 6 MB Docker image, which is built automatically from the Dockerfile in this repository. You can pull the latest version of this image from Docker Hub. It has multi-platform support for linux/amd64 and linux/arm64.

docker pull ekzhang/rustpad

(You can also manually build this image with docker build -t rustpad . in the project root directory.) To run locally, execute the following command, then open http://localhost:3030 in your browser.

docker run --rm -dp 3030:3030 ekzhang/rustpad

We deploy a public instance of this image using Fly.io.

In the media


All code is licensed under the MIT license.
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号