Project Icon

rl-agents

强化学习算法集:覆盖多种环境及应用

此页面介绍了多种强化学习算法的实现,如价值迭代、交叉熵方法、蒙特卡洛树搜索和深度Q网络,适用于有限MDP和连续动作空间等环境。用户可参考详细的安装和使用指南,通过命令行运行实验和基准测试,并使用Gym Monitor和Tensorboard等工具进行性能监控,非常适合优化决策和数据分析的研究者与开发者。

rl - 开源强化学习库TorchRL
TorchRL是专为PyTorch设计的开源强化学习库,提供高效的研究性能。它具备完整Python接口、模块化、定制化及强大扩展性,配备详尽文档和测试,确保用户快速上手且使用可靠。此外,TorchRL包括多种可复用功能,适用于成本、回报处理和数据管理,是开展强化学习研究与应用的理想工具。
RLcycle - 开源强化学习框架 提供多种算法实现
GithubHydraPyTorchRayWandB开源项目强化学习
RLcycle是一个开源的强化学习框架,实现了多种经典算法如DQN、A2C/A3C、DDPG和SAC。框架基于PyTorch构建,集成了Hydra配置管理、Ray并行计算和WandB日志记录功能。RLcycle提供可重用组件便于快速开发,支持Atari和PyBullet等环境,并附有使用指南和性能基准。该项目适合研究人员和开发者学习和实践各类强化学习算法。
Popular-RL-Algorithms - 流行强化学习算法的PyTorch实现与评估
GithubPyTorch开源代码开源项目强化学习性能对比算法实现
Popular-RL-Algorithms项目实现了SAC、DDPG、TD3、PPO等多种流行强化学习算法的PyTorch版本。项目提供了算法的多种实现以便比较,并包含奖励归一化、多进程训练等实用技巧。通过在OpenAI Gym环境中的性能展示,为强化学习研究和应用提供了参考。
drl-zh - 深度强化学习入门,从零开始实现经典算法
Atari游戏DQNDeep Reinforcement LearningGithubPPOSAC开源项目
本课程提供深度强化学习的基础和经典算法的实用入门指导。学习者将从零开始编写DQN、SAC、PPO等算法,并掌握相关理论。课程内容还包括训练AI玩Atari游戏及模拟登月任务。同时详细介绍环境设置和代码实现步骤,支持Visual Studio Code和Jupyter Notebook,确保学习过程流畅高效。
rl-baselines-zoo - 一站式强化学习训练与优化集成环境
GithubRL Baselines ZooStable-Baselines3开源项目强化学习训练代理超参数调优
RL Baselines Zoo提供一个多元化的强化学习代理集合,支持用户通过简易界面进行代理训练和算法评测。项目含多个环境和算法,带有经过优化的默认超参数,适用于教育和研究用途。注意:此库已停止维护,建议使用更新的RL-Baselines3 Zoo版本。
hands-on-rl - 实践驱动的强化学习进阶教程
GithubPython开源项目强化学习机器学习深度学习课程
hands-on-rl项目提供一套系统化的强化学习实践教程。该教程涵盖从Q-learning到策略梯度等核心算法,通过递进难度的案例帮助学习者掌握RL技术。内容包括出租车驾驶和登月模拟等实例,并结合深度学习知识。教程提供Python代码实现和详细解释,适合希望深入学习强化学习的研究者和开发者。
irl-imitation - 逆强化学习算法在Python和Tensorflow中的实现
GithubInverse Reinforcement LearningPythonTensorFlow开源项目强化学习算法实现
该项目实现了多种逆强化学习(IRL)算法,包括线性逆强化学习、最大熵逆强化学习和深度最大熵逆强化学习,基于Python和Tensorflow。支持在2D和1D网格世界中的应用。项目依赖于Python 2.7、cvxopt、Tensorflow 0.12.1和matplotlib,通过代码示例和命令行选项,有助于快速理解和使用这些算法。为逆强化学习领域的研究者提供了重要的参考资源。
AgentGym - 多环境下的广泛能力AI智能体进化平台
AgentGymGithub人工智能基准套件开源项目自我进化方法高质量轨迹集
AgentGym是一个框架,通过多种交互环境和统一任务格式,协助科研人员评估和开发具备广泛能力的语言模型智能体。平台支持实时反馈和并发操作,包含14种环境,如网页导航、文字游戏和家务任务。核心组成包括高质量的轨迹集AgentTraj和基准测试套件AgentEval,并提出了智能体自我进化方法AgentEvol。实验结果显示,进化后的智能体可与当前最先进的模型媲美。
mushroom-rl - 模块化强化学习Python库MushroomRL
GithubMushroomRLPython库开源项目强化学习机器学习深度学习
MushroomRL是一个模块化的Python强化学习库,集成主流张量计算库和RL基准测试环境。它实现了经典和深度强化学习算法,便于进行RL实验。该库兼容OpenAI Gym、PyBullet等环境,涵盖Q-Learning、DQN、DDPG等算法。MushroomRL还支持Habitat和iGibson等高真实度模拟环境,为研究提供多样化选择。
openrl - 综合性强化学习平台,支持多任务训练
GithubOpenRLPyTorch多智能体开源项目强化学习自然语言处理
OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号