Project Icon

ELYZA-japanese-Llama-2-7b-fast-instruct

提升日本语言处理与指令执行的创新模型

ELYZA-japanese-Llama-2-7b-fast-instruct基于Llama2,专注于提升日语处理能力,提供流畅的语言体验。通过针对日语的扩展训练,该模型在理解和生成日语方面表现优异,并支持GPU加速,以优化计算性能,适用于多种应用场景。欲了解更多使用案例和详细信息,请访问官方页面。

ELYZA-japanese-Llama-2-7b-fast-instruct 项目介绍

项目背景

ELYZA-japanese-Llama-2-7b-fast-instruct 是一个基于 Llama 2 模型开发的项目,旨在增强其在日语处理方面的能力。通过追加的事前学习训练,这个模型能够更好地理解和生成日语文本,为用户提供更自然和准确的回答。

模型描述

ELYZA-japanese-Llama-2-7b 模型是在 Llama2 的基础上进行额外的日语强化训练实现的。它的主要目标是在自然语言处理任务中提供更优质的日语支持。详细技术信息可以通过博客文章进行了解。

模型使用方法

要使用这个模型,用户可以利用 Python 中的 transformers 库来加载模型和分词器。以下是简单的代码示例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。"
text = "クマが海辺に行ってアザラシと友達になり、最終的には家に帰るというプロットの短編小説を書いてください。"

model_name = "elyza/ELYZA-japanese-Llama-2-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")

if torch.cuda.is_available():
    model = model.to("cuda")

prompt = "{bos_token}{b_inst} {system}{prompt} {e_inst} ".format(
    bos_token=tokenizer.bos_token,
    b_inst=B_INST,
    system=f"{B_SYS}{DEFAULT_SYSTEM_PROMPT}{E_SYS}",
    prompt=text,
    e_inst=E_INST,
)

with torch.no_grad():
    token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=256,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
    )
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True)
print(output)

以上代码展示了如何利用模型来生成一个关于熊和海豹的短篇小说示例。

模型版本

项目提供了多个模型版本供不同需求的用户使用:

开发者团队

该项目由以下开发者们合力完成(按字母顺序排列):

许可协议

Llama 2 的使用依据 LLAMA 2 社区许可协议,由 Meta Platforms, Inc. 版权所有。

如何引用

如果需要在论文或其他学术文献中引用该项目,可使用以下格式:

@misc{elyzallama2023, 
      title={ELYZA-japanese-Llama-2-7b}, 
      url={https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b}, 
      author={Akira Sasaki and Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura},
      year={2023},
}

这个项目为日语的语义理解和生成任务提供了强大的支持,致力于为用户提供更好的自然语言处理体验。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号