Project Icon

dinov2-small-imagenet1k-1-layer

视觉特征学习的Transformer模型

DINOv2方法无监督预训练的Vision Transformer,适用于影像特征学习增强场景。此小尺寸模型能在ImageNet-1k数据集上执行分类任务,通过提取特征来辅助下游任务。尽管模型未包含微调头,但可附加线性层进行标准分类,适合高精度视觉特征需求的应用。

FasterViT - 高效分层注意力的视觉transformer新突破
FasterViTGithub图像分类层级注意力机制开源项目目标检测视觉Transformer
FasterViT是一种创新的视觉transformer模型,采用分层注意力机制高效捕获短程和长程信息。在ImageNet分类任务中,FasterViT实现了精度和吞吐量的新平衡,无需额外训练数据即达到最先进水平。该项目提供多种预训练模型,适应不同计算资源和精度需求,支持任意分辨率输入,为目标检测、分割等下游任务提供灵活选择。
swinv2-tiny-patch4-window8-256 - 基于分层特征图的轻量级视觉Transformer模型
GithubHuggingfaceImageNetSwin Transformer v2图像分类开源项目模型深度学习计算机视觉
Swin Transformer V2是一个在ImageNet-1k数据集上预训练的视觉模型,采用分层特征图结构和局部窗口注意力机制,实现线性计算复杂度。模型整合了残差后归一化和余弦注意力等技术,在保持256x256分辨率输入的同时,提供了稳定的图像分类和特征提取能力。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
deit-tiny-patch16-224 - 高效小型视觉Transformer模型用于图像分类
DeiTGithubHuggingfaceImageNet图像分类图像处理开源项目模型深度学习
DeiT-tiny-patch16-224是一个在ImageNet-1k数据集上训练的高效视觉Transformer模型。该模型仅有5M参数,却在ImageNet top-1分类准确率上达到72.2%。它可处理224x224分辨率的图像输入,输出1000个ImageNet类别的预测结果,适用于各种图像分类任务。
dit-base-finetuned-rvlcdip - 基于自监督学习的文档图像转换模型应用
Document Image TransformerGithubHuggingfaceRVL-CDIP开源项目文档分类模型自我监督学习视觉编码器
Document Image Transformer 是一种基于 Transformer 的模型,专为自监督学习而设计,通过大量文档图像来学习图像的内在表示。经过 RVL-CDIP 数据集的细调,该模型适用于文档图像分类、表格检测和文档布局分析等任务。通过在预训练编码器上添加线性层,可以灵活实现不同任务的目标。模型将图像划分为16x16像素固定块,并使用离散 VAE 编码器的视觉 token 进行预测。该技术解决方案在灰度图像分类中表现出色,尤其是在细分类别的文档图像任务中。
ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
GithubHuggingfaceImageNet-1kVoVNet-v2timm图像分类开源项目模型特征提取
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
GroundingDINO - 语言驱动的开放集目标检测模型
GithubGrounding DINO开放集检测开源项目目标检测计算机视觉语言指导
GroundingDINO是一个基于语言的开放集目标检测模型,能够检测图像中的任意物体。该模型在COCO数据集上实现了零样本52.5 AP和微调后63.0 AP的性能。GroundingDINO支持CPU模式,可与Stable Diffusion等模型集成用于图像编辑,还能与SAM结合实现分割功能。此外,项目提供了丰富的演示和教程资源,为开放世界目标检测领域带来了新的解决方案。
convnext-tiny-224 - 高效图像分类 ConvNeXT卷积神经网络的新突破
ConvNeXTGithubHuggingfaceImageNetResNetVision Transformers图像分类开源项目模型
ConvNeXT是一款卷积模型,具有优于Vision Transformers的表现。设计灵感源于Swin Transformer,并对ResNet进行了现代化调整,专注于图像分类。ConvNeXT-tiny-224在ImageNet-1k数据集训练后,提供高效的分类能力。模型集线器提供适用不同任务的微调版本。
mobilenet_v2_1.0_224 - 轻量级移动设备图像分类神经网络MobileNet V2
GithubHuggingfaceImageNetMobileNet V2图像分类开源项目模型神经网络计算机视觉
MobileNet V2是一款针对移动设备优化的图像分类神经网络模型,在ImageNet-1k数据集上进行预训练。该模型以低延迟和低功耗著称,适用于资源受限的环境。MobileNet V2支持多种分辨率和深度配置,在模型大小、推理速度和准确性之间实现了良好平衡。除图像分类外,它还可应用于目标检测、特征嵌入和图像分割等计算机视觉任务,为移动端应用提供了versatile的解决方案。
dit-base - 面向文档智能处理的自监督预训练图像Transformer模型
DiTGithubHuggingface图像编码开源项目文档分析文档图像转换器模型自监督预训练
DiT-base是一款基于Transformer架构的文档图像处理模型,通过在4200万份文档图像上进行自监督预训练而成。该模型运用掩码补全任务来学习图像的内部表示,可应用于文档分类、表格检测和版面分析等多种任务。DiT-base能够将文档图像编码为向量,为文档智能处理领域的各类应用奠定了基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号