Project Icon

resnet-tiny-beans

基于ResNet的轻量级豆类识别模型

一个基于豆类数据集训练的轻量级识别模型,采用精简架构设计,主要用于快速验证和原型测试。模型具有小型化和灵活部署的特点,能在保持基本识别功能的同时实现最小规模。

tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
clip-vision-model-tiny - 轻量级AI图像处理与分析视觉模型
GithubHuggingfaceMIT协议代码许可开源协议开源项目模型许可证软件授权
基于MIT许可证开发的轻量级图像视觉模型,采用紧凑架构设计,具备高效的图像处理和分析能力。该开源项目适用于快速部署场景,可在资源受限环境中保持准确的图像识别表现。
yolos-tiny - 轻量级Vision Transformer目标检测模型
COCO数据集GithubHuggingfaceYOLOS图像处理开源项目模型目标检测视觉转换器
YOLOS-tiny是基于Vision Transformer的轻量级目标检测模型,在COCO 2017数据集上微调。模型采用简单架构,通过双边匹配损失训练,可预测物体类别和边界框。在COCO验证集上达到28.7 AP,与复杂框架性能相当。YOLOS-tiny为资源受限场景提供高效目标检测方案,适用于各种计算机视觉应用。
tinynet_e.in1k - TinyNet模型在ImageNet-1k上的应用与性能分析
GithubHuggingfaceImageNet-1ktimmtinynet_e.in1k图像分类开源项目模型特征提取
TinyNet是一个旨在优化图像分类和特征提取的模型,通过调整分辨率、深度和宽度,在ImageNet-1k上进行训练。模型参数量为2.0M,并具有低计算负荷。提供简便的代码示例以支持图像分类、特征图提取和图像嵌入,可用于多种图像处理场景。同时,通过timm库探索其指标表现,更深入了解其在神经信息处理中的应用。
resnet-50 - ResNet v1.5模型及其应用于图像识别
GithubHuggingfaceImageNetResNet-50卷积神经网络图像分类开源项目模型残差学习
ResNet v1.5模型采用残差学习和跳跃连接技术,可以训练更深的网络,提升图像识别精度。该版本在3x3卷积中进行下采样,与v1版相比略降性能但提升准确率。在ImageNet-1k数据集上预训练后,适合用于图像分类任务,并可通过Hugging Face平台进行微调。
bert-tiny - 轻量级预训练自然语言处理模型
BERTGithubHuggingface开源项目模型模型压缩知识蒸馏自然语言处理预训练模型
BERT-tiny是一款轻量级预训练自然语言处理模型,源自Google BERT项目。它采用2层网络结构和128维隐藏层,专为资源受限环境下的下游任务设计。尽管体积小巧,BERT-tiny在自然语言推理等任务中仍表现出色,保留了BERT模型的核心功能。这使其成为需要在计算资源有限情况下进行自然语言处理的研究人员和开发者的理想选择。
t5-efficient-tiny - 基于深层窄结构设计的轻量级自然语言处理模型
GithubHuggingfaceT5开源项目模型模型架构深度学习自然语言处理预训练模型
T5-Efficient-TINY是一个轻量级自然语言处理模型,基于Google T5架构开发。模型通过深层窄结构优化设计,仅需1558万参数即可实现出色性能。该模型在C4数据集完成预训练后,可用于文本摘要、问答和分类等英语NLP任务,需要进行针对性微调。采用半精度存储时,模型仅占用31.16MB内存,运行效率较高。
inception_next_tiny.sail_in1k - InceptionNeXt架构的轻量级图像分类模型
GithubHuggingfaceImageNet-1kInceptionNeXttimm图像分类开源项目模型特征提取
inception_next_tiny.sail_in1k是基于InceptionNeXt架构的图像分类模型,在ImageNet-1k数据集上训练。该模型结合Inception和ConvNeXt的特点,提供图像分类、特征图提取和图像嵌入功能。模型参数为28.1M,GMACs为4.2,适用于224x224大小的图像输入。它通过timm库提供简洁的API,支持预训练权重,可轻松应用于多种计算机视觉任务。
resnet50.tv_in1k - ResNet-B模型实现高效图像识别与分析
GithubHuggingfaceImageNetResNet-BTimm图像分类开源项目模型特征提取
ResNet-B模型是一款专为图像分类和特征提取而设计的工具,其特点包括ReLU激活和7x7卷积,适合224x224像素图像。在ImageNet-1k数据集上训练,具备优异的参数和计算性能。通过timm库,用户可以轻松将其应用于图像分类、特征提取和图像嵌入等多种场景。
efficientnetv2_rw_s.ra2_in1k - EfficientNetV2架构的轻量级图像分类模型
EfficientNetV2GithubHuggingfaceImageNet图像分类开源项目机器学习模型模型深度学习
基于EfficientNetV2架构的图像分类模型,通过timm框架实现,使用RandAugment数据增强和RMSProp优化器在ImageNet-1k数据集训练。模型参数量23.9M,计算量4.9 GMACs,训练分辨率288x288,测试分辨率384x384。支持图像分类、特征图提取和图像嵌入等功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号