Project Icon

morph-net

在训练过程中优化深度网络结构的方法

MorphNet是一种在训练过程中优化深度网络结构的方法。通过使用正则化器优化FLOPs或模型大小等资源的消耗,MorphNet实现了受约束的网络结构优化。新方法FiGS采用概率性通道正则化,适用于剪枝和可微架构搜索。MorphNet可以在不改变网络拓扑的情况下调整卷积层的输出通道数,以简化模型并满足内存和延迟需求。项目由Elad Eban和Andrew Poon等人维护。

RectifiedFlow - 直线路径优化的快速数据生成与传输技术
GithubRectified Flow图像生成开源项目机器学习深度学习生成模型
RectifiedFlow是一种新型机器学习方法,通过连接样本间的直线路径并学习ODE模型,建立分布间的传输映射。该方法反复优化ODE轨迹,实现高效的一步生成,在保持多样性的同时提高了FID指标。RectifiedFlow在生成建模和无监督域转移方面具有广泛应用前景,为图像生成和数据处理领域提供了新的解决方案。
LFM - 潜空间流匹配实现高效图像生成
Flow MatchingGithubPyTorch图像生成开源项目潜在空间生成模型
LFM项目创新性地将流匹配应用于预训练自编码器的潜空间,显著提升高分辨率图像生成的效率。这种方法不仅在计算资源有限的情况下保持了图像质量,还首次将条件生成任务融入流匹配框架。经过广泛测试,LFM在多个数据集上均取得了优异的定量和定性结果。
distill-sd - 更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成
GithubStable Diffusion开源项目模型压缩神经网络训练细节预训练检查点
基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。
TopoNet - 自动驾驶场景拓扑推理的图神经网络方法
GithubOpenLane-V2TopoNet图神经网络场景拓扑推理开源项目自动驾驶
TopoNet是一个端到端框架,用于推理自动驾驶场景中车道中心线和交通元素间的连接关系。该框架采用图神经网络和知识图结构,整合异构特征并加强特征交互。TopoNet在OpenLane-V2数据集上展现了领先性能,为自动驾驶场景拓扑推理树立新标准。项目提供开源代码和预训练模型,促进自动驾驶研究发展。
low-bit-optimizers - 4位优化器技术减少内存占用 提升大规模模型训练能力
4位优化器AdamWGithub内存效率开源项目神经网络训练量化
Low-bit Optimizers项目实现了一种4位优化器技术,可将优化器状态从32位压缩至4位,有效降低神经网络训练的内存使用。通过分析一阶和二阶动量,该项目提出了改进的量化方法,克服了现有技术的限制。在多项基准测试中,4位优化器实现了与全精度版本相当的准确率,同时提高了内存效率,为大规模模型训练开辟了新途径。
DCNv4 - 为视觉应用设计的高效算子,通过优化空间聚合和内存访问
DCNv4Github可变形卷积开源项目深度学习神经网络计算机视觉
DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。
NeMo - 人工智能训练和部署平台
GithubNVIDIA NeMo多模态模型大语言模型开源项目热门生成式AI语音识别
NeMo框架是NVIDIA开发的一款云原生生成式AI框架,专为研究人员和使用PyTorch的开发者设计,支持大型语言模型、多模态模型、自动语音识别等多个领域。该框架能够利用现有代码和预训练的模型检查点,帮助用户高效创建和定制新的生成式AI模型。通过广泛的教程和文档,用户可以轻松开始使用NeMo框架,无论是在任何云端还是本地环境中。
LMFlow - 开源大型机器学习模型微调工具箱
GithubLMFlowfinetuning优化开源项目性能模型
LMFlow为大型机器学习模型微调提供一个可扩展、便捷且高效的开源工具箱,支持多种优化功能,如自定义优化器训练、LISA算法等,已广泛应用于机器学习领域。
conditional-flow-matching - 连续正规化流模型的高效训练库
Flow MatchingGithubPyTorchTorchCFM开源项目生成模型连续正规化流
TorchCFM是一个专注于条件流匹配(CFM)方法的开源库,用于高效训练连续正规化流(CNF)模型。该库提供了多种CFM变体的实现,包括OT-CFM和[SF]2M,可用于图像生成、单细胞动力学和表格数据等任务。TorchCFM旨在帮助研究人员更便捷地使用和扩展这些先进的生成模型技术,缩小CNF与扩散模型之间的性能差距。
LLM-Pruner - 通过结构剪枝技术高效压缩大型语言模型的工具
GithubLLM-Pruner压缩多任务解决开源项目结构剪枝自动剪枝
LLM-Pruner项目专注于通过结构剪枝技术高效压缩大型语言模型,在保留多任务处理能力的同时减少训练数据需求。仅需3分钟剪枝及3小时后训练,此方法利用50,000个公开样本快速实现剪枝与再训练。支持Llama系列、Vicuna、BLOOM、Baichuan等多种LLM,自动化剪枝过程简化了新模型的剪枝步骤。该技术允许根据需要调整模型规模,优化资源使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号