Project Icon

vit-large-patch16-384

Vision Transformer大模型,提升高分辨率图像分类表现

项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。

vit_small_patch14_dinov2.lvd142m - 基于Vision Transformer的自监督图像特征提取模型
DINOv2GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取
这是一个基于Vision Transformer架构的图像特征提取模型。该模型采用DINOv2自监督学习方法,在LVD-142M数据集上预训练,拥有2210万参数,支持处理518x518尺寸的图像。模型可应用于图像分类和特征提取任务,并提供了相关的使用示例代码。作为一个无监督学习的视觉模型,它能够提取稳健的图像特征表示。
deit-base-distilled-patch16-224 - DeiT模型通过蒸馏技术提升ImageNet图像分类性能
DeiTGithubHuggingfaceImageNet图像分类开源项目模型蒸馏视觉Transformer
DeiT-base-distilled-patch16-224是一种基于Vision Transformer的图像分类模型,通过蒸馏技术从CNN教师模型中学习。该模型在ImageNet-1k数据集上进行预训练和微调,在224x224分辨率下实现83.4%的top-1准确率。模型采用16x16图像块嵌入和蒸馏token,适用于多种计算机视觉任务,尤其在图像分类领域表现优异。
rorshark-vit-base - ViT架构图像分类模型实现99.23%精度
GithubHuggingfaceViT准确率图像分类开源项目机器学习模型训练模型
rorshark-vit-base是基于google/vit-base-patch16-224-in21k模型微调的图像分类器。该模型采用Vision Transformer架构,在imagefolder数据集上达到99.23%的分类准确率。经过5轮训练,使用Adam优化器和线性学习率调度。虽然在高精度图像分类任务中表现出色,但其具体应用场景和局限性有待进一步研究。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
FasterViT - 高效分层注意力的视觉transformer新突破
FasterViTGithub图像分类层级注意力机制开源项目目标检测视觉Transformer
FasterViT是一种创新的视觉transformer模型,采用分层注意力机制高效捕获短程和长程信息。在ImageNet分类任务中,FasterViT实现了精度和吞吐量的新平衡,无需额外训练数据即达到最先进水平。该项目提供多种预训练模型,适应不同计算资源和精度需求,支持任意分辨率输入,为目标检测、分割等下游任务提供灵活选择。
dino-vitb16 - DINO训练的ViT模型在图像识别中的应用
DINOGithubHuggingface图像分类开源项目模型特征提取自监督学习视觉Transformer
DINO-ViTB16是一个基于视觉Transformer的自监督学习模型,在ImageNet-1k数据集上预训练。它将图像分割为16x16像素的patch序列,通过Transformer编码器处理,可捕获图像的内部表示。该模型适用于图像分类等多种计算机视觉任务,通过在[CLS] token上添加线性层即可实现。DINO-ViTB16展示了自监督学习在视觉领域的巨大潜力,为图像处理提供了新的解决方案。
vit_large_patch14_clip_336.openai - 通过CLIP模型探索计算机视觉鲁棒性
CLIPGithubHuggingfaceOpenAI偏见开源项目数据集模型计算机视觉
OpenAI开发的CLIP模型通过ViT-L/14 (336x336)架构提高视觉任务的鲁棒性,专注于零样本图像分类,供研究人员深入探索。这个模型针对英语场景,其数据主要源自发达国家的互联网用户,目前不建议用于商用部署,但在学术界具备多学科研究的重要价值。
maxvit_base_tf_512.in21k_ft_in1k - MaxViT图像分类模型支持多尺寸特征提取和深度学习训练
GithubHuggingfaceImageNetMaxViT人工智能图像分类开源项目模型深度学习
MaxViT是谷歌研究团队开发的图像分类模型,通过ImageNet-21k预训练和ImageNet-1k微调实现。模型集成多轴注意力机制,总参数量119.9M,支持512x512分辨率输入。除图像分类外,还可输出多尺度特征图和嵌入向量,便于迁移至其他视觉任务。模型在ImageNet-1k测试中取得88.20%的分类准确率。
vit_small_patch8_224.dino - 基于自监督DINO的图像特征提取Transformer
GithubHuggingfaceVision Transformer图像分类开源项目模型模型比较特征提取自监督学习
项目提供了一种自监督DINO方法的Vision Transformer模型,用于图像特征提取。具有21.7M参数和16.8 GMACs运算量,预训练数据为ImageNet-1k。适用于多种视觉任务,支持通过PyTorch和timm库实现,确保高效处理。这项技术在视觉Transformer领域表现出色。
dino-vitb8 - 无需微调,实现高效图像分类的自监督视觉转换器
GithubHuggingfaceImageNet-1kVision Transformer图像分类开源项目模型自监督学习预训练模型
Vision Transformer (ViT)模型通过DINO方法进行的自监督训练在ImageNet-1k数据集上预训练,注重提升图像特征提取,无需微调即可应用于图像分类,兼顾多种下游任务。可根据任务需求选择合适的微调版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号