Project Icon

pytorch-stable-diffusion

从零完成Stable Diffusion的PyTorch实现

该项目通过PyTorch从头实现Stable Diffusion,包括权重和tokenizer文件的下载链接,以及微调模型的下载指南。特别感谢多个相关开源项目的支持,完善此实现。

cycle-diffusion - 零样本图像翻译与无配对图片转换的扩散模型方法
CycleDiffusionGithubHuggingFacePyTorch开源项目扩散模型零样本图像编辑
该项目展示了如何正规化扩散模型中的随机种子,并实现零样本图像到图像翻译和指导。CycleDiffusion方法无需配对图像,利用稳定扩散等模型实现图像翻译。项目还提供详细的安装和使用指南,包括依赖项、预训练模型和评估数据等内容,通过这些工具可提高生成图像的质量和一致性。
stable-diffusion-colab - Stable Diffusion Hyper-SDXL模型在Colab上的简易部署与使用
AI绘图ColabGithubStable Diffusion开源项目文本生成图像深度学习
该项目为Stable Diffusion Hyper-SDXL模型提供了Colab部署方案。用户可通过简单的文本提示生成高分辨率创意图像,如火星上骑马的宇航员或埃菲尔铁塔前用餐的皮卡丘。项目采用先进的潜在扩散模型技术,并集成了LCM-LoRA加速模块,有效提升了图像生成效率。
swift-coreml-diffusers - Swift应用中集成Core ML实现Stable Diffusion模型
Core MLGithubStable DiffusionSwiftiOSmacOS开源项目
swift-coreml-diffusers项目展示如何在Swift应用中集成Apple的Core ML Stable Diffusion实现。该应用支持macOS和iOS设备,采用DPM-Solver++调度器提高性能。首次启动时自动下载量化Core ML模型,可利用CPU、GPU和Neural Engine加速。项目适合快速迭代开发,也可作为在Apple设备上实现AI图像生成的示例代码。
HCP-Diffusion - Stable Diffusion模型训练与优化工具集
DreamArtist++GithubHCP-DiffusionLoRAStable Diffusion开源项目文本到图像生成
HCP-Diffusion是基于Diffusers库开发的Stable Diffusion模型工具集。它整合了多种文本到图像生成的训练方法,包括Prompt-tuning和Textual Inversion等。该工具集引入了DreamArtist++技术,支持一次性文本到图像生成。HCP-Diffusion提供层级LoRA、模型集成和自定义优化器等功能,为AI研究和开发提供全面的模型训练与推理支持。
FastDiff - 高效生成高保真语音的快速条件扩散模型
FastDiffGithubPyTorch开源项目条件扩散模型语音合成高保真语音合成
FastDiff项目实现了一种高效生成高保真语音的条件扩散模型。该项目在GitHub上提供了开源实现和预训练模型,支持包括LJSpeech、LibriTTS和VCTK在内的多种数据集。适用于语音合成和神经语音编解码等任务,并支持多GPU并行训练。项目还提供了详细的推理和训练指南,以及预处理工具和训练配置示例。FastDiff代码参考了NATSpeech和Tacotron2等项目,广泛适用于研究和实际应用。
diffusion-classifier - 利用大规模文本到图像生成模型实现零样本分类
Diffusion ClassifierGithubICCV 2023Stable Diffusionzero-shot分类开源项目生成模型
本项目展示了如何利用大型文本图像生成模型如Stable Diffusion进行零样本分类,无需额外训练。该生成分类方法在多项基准测试中表现优越,超过其他扩散模型的知识提取方法。通过从ImageNet的类条件扩散模型中提取标准分类器,该模型即使在仅使用弱增强的情况下也表现出强大的分类性能和分布转移的稳健性。本研究推进了生成模型在下游任务中的应用,是对多模态组合推理能力的重要探索。
autoregressive-diffusion-pytorch - 自回归扩散模型:无向量量化的图像生成方法
GithubPyTorch图像生成开源项目深度学习神经网络自回归扩散
autoregressive-diffusion-pytorch是一个基于PyTorch的自回归扩散模型实现,源自'Autoregressive Image Generation without Vector Quantization'论文。模型支持序列和图像输入,无需向量量化即可生成高质量图像。项目提供简洁API接口,包含详细使用说明和示例代码,适合研究人员和开发者探索自回归扩散模型。
Stable-Diffusion - 关于稳定扩散和SDXL的专家级教程
Automatic1111 Web UIDreamBoothGithubLoRAStable Diffusion开源项目教程视频
探索Dr. Furkan Gözükara领导的Stable Diffusion项目。通过全面的高级教程视频,涵盖自动化Web UI安装至模型训练,与我们一起从基础到专家,深入理解并运用Stable Diffusion技术。包含Google Colab和Automatic1111 Web UI的实操演示,适合所有技术爱好者。
diffusion-nbs - 扩散模型入门资源集合
AIGithub图像生成开源项目扩散模型机器学习深度学习
diffusion-nbs项目是一个专注于扩散模型的入门资源集合。该项目提供了一系列教程和Jupyter notebooks示例,旨在帮助初学者和研究人员理解扩散模型的基本概念。内容涵盖了扩散过程的原理和实践应用,为学习者提供了扎实的基础知识,并展示了如何在各种场景中应用这一技术。
BentoDiffusion - 如何使用BentoML部署和运行Stable Diffusion模型的教程
BentoMLGithubSDXL TurboStable Diffusion图像生成开源项目模型部署
本项目示例展示如何使用BentoML部署和运行Stable Diffusion模型,适用于图像生成和操作系统应用开发。需具备Python 3.9+和BentoML基础知识,并可利用Nvidia GPU进行本地测试。内容涵盖依赖安装、服务运行和BentoCloud部署,提供多个模型选择如ControlNet、Latent Consistency Model和Stable Diffusion 2等。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号