Project Icon

flask-msearch

Flask全文搜索扩展 支持多种搜索引擎

flask-msearch是一个为Flask应用提供全文搜索功能的扩展。它支持简单搜索、Whoosh和Elasticsearch等多种搜索后端。该扩展可为SQLAlchemy模型轻松添加搜索功能,支持自定义索引名称、模式和分析器。flask-msearch提供创建、更新和删除索引的方法,并支持关联模型索引。此扩展适合需要在Flask应用中集成全文搜索功能的开发者使用。

** Installation To install flask-msearch:

#+BEGIN_SRC shell pip install flask-msearch

when MSEARCH_BACKEND = "whoosh"

pip install whoosh blinker

when MSEARCH_BACKEND = "elasticsearch", only for 6.x.x

pip install elasticsearch==6.3.1 #+END_SRC

Or alternatively, you can download the repository and install manually by doing: #+BEGIN_SRC sehll git clone https://github.com/honmaple/flask-msearch cd flask-msearch python setup.py install #+END_SRC

** Quickstart #+BEGIN_SRC python from flask_msearch import Search [...] search = Search() search.init_app(app)

 # models.py
 class Post(db.Model):
     __tablename__ = 'post'
     __searchable__ = ['title', 'content']

 # views.py
 @app.route("/search")
 def w_search():
     keyword = request.args.get('keyword')
     results = Post.query.msearch(keyword,fields=['title'],limit=20).filter(...)
     # or
     results = Post.query.filter(...).msearch(keyword,fields=['title'],limit=20).filter(...)
     # elasticsearch
     keyword = "title:book AND content:read"
     # more syntax please visit https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
     results = Post.query.msearch(keyword,limit=20).filter(...)
     return ''

#+END_SRC

** Config

#+BEGIN_SRC python # when backend is elasticsearch, MSEARCH_INDEX_NAME is unused # flask-msearch will use table name as elasticsearch index name unless set msearch_index MSEARCH_INDEX_NAME = 'msearch' # simple,whoosh,elaticsearch, default is simple MSEARCH_BACKEND = 'whoosh' # table's primary key if you don't like to use id, or set msearch_primary_key for special model MSEARCH_PRIMARY_KEY = 'id' # auto create or update index MSEARCH_ENABLE = True # logger level, default is logging.WARNING MSEARCH_LOGGER = logging.DEBUG # SQLALCHEMY_TRACK_MODIFICATIONS must be set to True when msearch auto index is enabled SQLALCHEMY_TRACK_MODIFICATIONS = True # when backend is elasticsearch ELASTICSEARCH = {"hosts": ["127.0.0.1:9200"]} #+END_SRC

** Usage #+BEGIN_SRC python from flask_msearch import Search [...] search = Search() search.init_app(app)

 class Post(db.Model):
     __tablename__ = 'basic_posts'
     __searchable__ = ['title', 'content']

     id = db.Column(db.Integer, primary_key=True)
     title = db.Column(db.String(49))
     content = db.Column(db.Text)

     def __repr__(self):
         return '<Post:{}>'.format(self.title)

#+END_SRC

if raise sqlalchemy ValueError,please pass db param to Search #+BEGIN_SRC python db = SQLalchemy() search = Search(db=db) #+END_SRC

*** Create_index #+BEGIN_SRC sh search.create_index() search.create_index(Post) #+END_SRC

*** Update_index #+BEGIN_SRC python search.update_index() search.update_index(Post) # or search.create_index(update=True) search.create_index(Post, update=True) #+END_SRC

*** Delete_index #+BEGIN_SRC python search.delete_index() search.delete_index(Post) # or search.create_index(delete=True) search.create_index(Post, delete=True) #+END_SRC

*** Custom Analyzer only for whoosh backend #+BEGIN_SRC python from jieba.analyse import ChineseAnalyzer search = Search(analyzer=ChineseAnalyzer()) #+END_SRC

or use =__msearch_analyzer__= for special model
#+BEGIN_SRC python
  class Post(db.Model):
      __tablename__ = 'post'
      __searchable__ = ['title', 'content', 'tag.name']
      __msearch_analyzer__ = ChineseAnalyzer()
#+END_SRC

*** Custom index name If you want to set special index name for some model. #+BEGIN_SRC python class Post(db.Model): tablename = 'post' searchable = ['title', 'content', 'tag.name'] msearch_index = "post111" #+END_SRC

*** Custom schema #+BEGIN_SRC python from whoosh.fields import ID

 class Post(db.Model):
     __tablename__ = 'post'
     __searchable__ = ['title', 'content', 'tag.name']
     __msearch_schema__ = {'title': ID(stored=True, unique=True), 'content': 'text'}
#+END_SRC

*Note:* if you use =hybrid_property=, default field type is =Text= unless set special =__msearch_schema__=

*** Custom parser #+begin_src python from whoosh.qparser import MultifieldParser

  class Post(db.Model):
      __tablename__ = 'post'
      __searchable__ = ['title', 'content']

      def _parser(fieldnames, schema, group, **kwargs):
          return MultifieldParser(fieldnames, schema, group=group, **kwargs)

      __msearch_parser__ = _parser
#+end_src

*Note:* Only for =MSEARCH_BACKEND= is =whoosh=

*** Custom index signal flask-msearch uses flask signal to update index by default, if you want to use other asynchronous tools such as celey to update index, please set special =MSEARCH_INDEX_SIGNAL= #+begin_src python # app.py app.config["MSEARCH_INDEX_SIGNAL"] = celery_signal # or use string as variable app.config["MSEARCH_INDEX_SIGNAL"] = "modulename.tasks.celery_signal" search = Search(app)

  # tasks.py
  from flask_msearch.signal import default_signal

  @celery.task(bind=True)
  def celery_signal_task(self, backend, sender, changes):
      default_signal(backend, sender, changes)
      return str(self.request.id)

  def celery_signal(backend, sender, changes):
      return celery_signal_task.delay(backend, sender, changes)
#+end_src

** Relate index(Experimental) for example #+BEGIN_SRC python class Tag(db.Model): tablename = 'tag'

     id = db.Column(db.Integer, primary_key=True)
     name = db.Column(db.String(49))

 class Post(db.Model):
     __tablename__ = 'post'
     __searchable__ = ['title', 'content', 'tag.name']

     id = db.Column(db.Integer, primary_key=True)
     title = db.Column(db.String(49))
     content = db.Column(db.Text)

     # one to one
     tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'))
     tag = db.relationship(
         Tag, backref=db.backref(
             'post', uselist=False), uselist=False)

     def __repr__(self):
         return '<Post:{}>'.format(self.title)

#+END_SRC

You must add msearch_FUN to Tag model,or the tag.name can't auto update. #+BEGIN_SRC python class Tag.... ...... def msearch_post_tag(self, delete=False): from sqlalchemy import text sql = text('select id from post where tag_id=' + str(self.id)) return { 'attrs': [{ 'id': str(i[0]), 'tag.name': self.name } for i in db.engine.execute(sql)], '_index': Post } #+END_SRC

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号