Project Icon

TinyBERT_General_4L_312D

轻量级自然语言处理模型 提升理解效率

TinyBERT_General_4L_312D是一个经过知识蒸馏的轻量级自然语言处理模型。相比原始BERT模型,它的体积减小了7.5倍,推理速度提升了9.4倍,同时保持了竞争性能。该模型在预训练和任务特定学习阶段都应用了创新的Transformer蒸馏技术。TinyBERT为各类自然语言处理任务提供了高效的基础,尤其适用于计算资源受限的应用场景。

SecureBERT - 网络安全专用的语言模型,提升文本分析和信息处理能力
GithubHuggingfaceSecureBERT开源项目文本分类模型网络安全语言模型问答
SecureBERT基于RoBERTa构建,是专用于处理网络安全文本的领域特定语言模型。经过海量的网络安全文本训练,它表现出在文本分类、命名实体识别等任务中的卓越性能,并在填空预测上优于模型如RoBERTa和SciBERT,保持对通用英语的良好理解。SecureBERT已在Huggingface平台上线,可作为下游任务的基础模型,以实现更精准的文本分析和处理。
Transformers-for-NLP-2nd-Edition - BERT到GPT-4的Transformer模型详解
BERTGPT-4GithubOpenAI APITransformers-for-NLP-2nd-Edition开源项目机器学习
本项目涵盖了从BERT到GPT-4的Transformer模型,提供了在Hugging Face和OpenAI环境下的微调、训练及提示工程示例。还包括ChatGPT、GPT-3.5-turbo、GPT-4和DALL-E的使用示例,包括语音到文本、文本到语音、文本到图像生成等内容。详述了GPT-4 API提示工程和最新平台更新,提供实用的指导与教程。
deberta-v2-xxlarge - 强大的自然语言处理模型,采用解耦注意力机制的BERT增强版
BERTDeBERTaGithubHuggingface开源项目模型深度学习自然语言处理预训练模型
DeBERTa-v2-xxlarge是一个48层、1536隐藏层和15亿参数的高级语言模型。它通过解耦注意力和增强型掩码解码器优化了BERT和RoBERTa架构,使用160GB原始数据训练。该模型在SQuAD和GLUE等多个自然语言理解任务中表现优异,性能显著优于BERT和RoBERTa。DeBERTa-v2-xxlarge适用于复杂的自然语言处理任务,是研究和开发中的有力工具。
bert-base-uncased - BERT基础版无大小写区分的预训练英语语言模型
BERTGithubHuggingface开源项目文本分类机器学习模型自然语言处理预训练模型
BERT-base-uncased是一个在大规模英语语料上预训练的基础语言模型。该模型不区分大小写,通过掩码语言建模和下一句预测两个目标进行训练,学习了英语的双向语义表示。它可以为序列分类、标记分类、问答等下游任务提供良好的基础,适合进一步微调以适应特定应用场景。
bert-base-chinese - BERT预训练模型在中文自然语言处理中的应用
BERTGithubHuggingface中文模型开源项目掩码语言模型模型自然语言处理预训练
bert-base-chinese是一个专为中文自然语言处理设计的预训练BERT模型。该模型采用独立字词片段随机掩码训练方法,适用于掩码语言建模等任务。由HuggingFace团队开发,拥有12层隐藏层和21128词汇量。虽然可能存在潜在偏见,但为中文NLP应用提供了有力支持。研究人员可通过简洁的Python代码快速应用此模型。
deberta-large - DeBERTa模型利用解耦注意力机制提升自然语言理解能力
DeBERTaGithubHuggingface开源项目微软模型注意力机制自然语言处理语言模型
DeBERTa是微软开发的预训练语言模型,基于BERT和RoBERTa进行改进。该模型引入解耦注意力和增强型掩码解码器,在80GB训练数据上优化后,在多数自然语言理解任务中超越BERT和RoBERTa。DeBERTa在SQuAD和GLUE等基准测试中表现出色,其中DeBERTa-V2-XXLarge版本在多项任务上达到顶尖水平。研究者可通过Hugging Face的transformers库使用和微调DeBERTa模型。
labse_bert - 多语言BERT句子嵌入模型及其应用
GithubHuggingfaceLABSE BERT句子嵌入多语言处理开源项目模型模型应用自然语言处理
LaBSE BERT是一种语言无关的句子嵌入模型,由Fangxiaoyu Feng等人开发并在TensorFlow Hub上提供。该模型能够将文本转换为高效的向量表示,适用于多语言文本处理。利用AutoTokenizer和AutoModel加载模型,并通过mean_pooling方法获取句子嵌入,以增强文本分析和信息检索等领域的性能。使用PyTorch实现编码和处理,多语言文本分析更加轻松。
TinyNeuralNetwork - 高效易用的深度学习模型压缩框架
GithubTinyNeuralNetwork开源项目模型压缩深度学习神经网络量化训练
TinyNeuralNetwork是一个开源的深度学习模型压缩框架,提供神经架构搜索、剪枝、量化和模型转换等功能。该框架支持计算图捕获、依赖解析、多种剪枝算法、量化感知训练和模型转换,为深度学习模型优化提供全面解决方案。TinyNeuralNetwork已应用于天猫精灵、海尔电视等超过1000万IoT设备,实现AI能力部署。
Pretrained-Language-Model - 先进预训练语言模型与优化技术集合
GithubMindSporePyTorchTensorFlow开源项目自然语言处理预训练语言模型
此开源项目汇集了多个先进的预训练语言模型和相关优化技术。包含200B参数中文语言模型PanGu-α、高性能中文NLP模型NEZHA、模型压缩技术TinyBERT和DynaBERT等子项目。这些模型在多项中文NLP任务中表现出色,支持MindSpore、TensorFlow和PyTorch等多种深度学习框架。
cramming - 探索单GPU一天内训练BERT语言模型的极限
BERTCramming Language ModelGLUEGithubPyTorchTransformer-based language model开源项目
本项目探索在单GPU上用一天时间预训练BERT语言模型的性能表现,旨在挑战当前以高算力为核心的趋势。通过调整预训练流程,展示了在严格计算限制下依然接近BERT性能,并分析不同改进对性能的影响。最新版本框架需要PyTorch 2.0,改善了数据预处理并提升了1-2% GLUE性能,提供了详细的代码运行和数据处理指南供研究和应用参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号