Project Icon

llama-160m-accelerator

基于多阶段MLP的LLaMA-160M模型推理加速器

这是一个为JackFram/llama-160m模型设计的加速器项目,借鉴了Medusa推测解码架构的思想。该加速器通过改造MLP为多阶段结构,实现了基于状态向量和先前采样令牌的单token预测,有效提升了模型推理速度。项目支持与vLLM和Hugging Face TGI等工具集成,为大型语言模型的高效部署提供了实用解决方案。加速器的训练过程轻量化,能够在短时间内完成,适用于各种规模的生成式模型。

Llama-3.2-3B-GGUF - 高性能多语言型大语言模型支持8种语言
GithubHuggingfaceLlama 3.2人工智能多语言开源项目机器学习模型语言模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,适用于对话和代理任务。本项目使用llama.cpp对原模型进行量化,保留了128k上下文长度和分组查询注意力等特性。该模型在行业基准测试中表现优异,可用于聊天、知识检索、摘要等自然语言生成任务,适合商业和研究使用。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2语言模型微调加速与优化工具
GithubHuggingfaceLlama-3.2人工智能大语言模型开源项目模型模型训练自然语言处理
该项目针对Meta的Llama 3.2-1B-Instruct模型提供开源微调解决方案。通过Unsloth技术,实现2-5倍训练速度提升和70%内存节省。项目提供多种量化版本的GGUF模型文件,支持Llama 3.2、Gemma 2等主流大语言模型。免费Google Colab笔记本便于用户进行微调和部署。适合需要高效定制大语言模型的开发者和研究人员使用。
Llama-3.2-1B - Meta推出多语言大规模语言模型 支持多种商业和研究场景
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B是Meta开发的多语言大规模语言模型,支持8种语言。采用优化的Transformer架构,经9T token训练,具128K上下文长度。适用于对话、检索、摘要等任务,性能优于多数开源和闭源模型。支持商业和研究用途,可开发AI助手、写作工具等。提供原始和量化版本,适应不同计算资源需求。该模型在多语言处理和应用灵活性方面表现出色。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
TinyLlama-1.1B-intermediate-step-955k-token-2T - 探讨紧凑型1.1B参数模型的高效预训练
GithubHuggingfaceTinyLlama参数开源项目模型计算预训练
TinyLlama项目目标是在3万亿标记上预训练一个具备1.1B参数的Llama模型。通过优化技术,该项目可在90天内使用16个A100-40G GPU完成训练。采用与Llama 2相同的架构和分词器,确保与其他开源项目的兼容性。TinyLlama的紧凑设计适合计算和内存受限的应用。该项目于2023年9月1日启动,计划在2023年12月1日前完成,并会逐步发布中间检查点。详细信息请查看TinyLlama GitHub页面。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
llama-3-8b-bnb-4bit - 大语言模型微调工具提升训练速度并降低内存使用
AI训练GithubHuggingfaceLlama 3MetaUnsloth大语言模型开源项目模型
llama-3-8b-bnb-4bit项目是一种高效的大语言模型微调方法,能将训练速度提升2-5倍,同时减少70%内存使用。支持Llama 3.1、Gemma 2和Mistral等热门模型,并提供面向初学者的Google Colab笔记本。用户可以快速微调模型并导出为GGUF、vLLM格式或上传至Hugging Face。该工具降低了LLM微调的门槛,为开发者和研究者提供了便利。
Llama-3.2-3B-bnb-4bit - Unsloth技术优化Llama-3.2模型微调 加速训练节省内存
GithubHuggingfaceLlama 3.2Unsloth多语言大语言模型开源项目微调模型
Llama-3.2-3B-bnb-4bit项目应用Unsloth技术优化模型微调,将训练速度提高2.4倍,同时减少58%内存使用。项目为Llama-3系列、Gemma 2和Mistral等多个模型提供免费Colab笔记本,便于初学者进行高效模型微调。此外,还包括对话型、文本补全型专用笔记本和DPO技术应用示例,全面支持各类模型优化需求。
Llama-3.2-1B-Instruct-GGUF - 多语言模型优化,提升对话和信息处理效率
GithubHuggingfaceLlama 3.2优化多语言对话开源项目模型生成模型行业基准
这个项目提供了经过优化的多语言大语言模型,提升了对话应用的效果和效率。Llama 3.2系列在1B和3B规格中进行了预训练及指令优化,能够处理信息提取和文本总结等多种任务。该模型在常用的行业基准测试中表现优于许多其他开源和闭源模型。SanctumAI通过量化增加了模型的操作效率,并提供多种量化选项以适应不同的硬件需求。在多语言对话的使用案例中,这些优化后的模型确保了良好的性能表现。
Llama-3.2-11B-Vision-Instruct-FP8-dynamic - Meta-Llama视觉语言模型FP8量化版支持多语言部署
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型视觉识别量化压缩
基于Meta-Llama-3.2架构的视觉语言模型,通过FP8动态量化技术实现模型压缩,在保持原有性能的同时将显存需求降低50%。模型支持图文输入和多语言输出,可通过vLLM实现快速部署,提供OpenAI兼容接口,适合商业场景应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号